Author: Zhang, H.D.
Paper Title Page
MOPOPT048 Design of a Prototype Gas Jet Profile Monitor for Installation Into the Large Hadron Collider at CERN 363
 
  • R. Veness, M. Ady, C. Castro Sequeiro, T. Lefèvre, S. Mazzoni, I. Papazoglou, A. Rossi, G. Schneider, O. Sedláček, K. Sidorowski
    CERN, Meyrin, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • N. Kumar, A. Salehilashkajani, O. Sedláček, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N. Kumar, A. Salehilashkajani, O. Sedláček, O. Stringer, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  The Beam-Gas Curtain or BGC is the baseline instrument for monitoring the concentricity of the LHC proton beam with a hollow electron beam for the hollow e-lens (HEL) beam halo suppression device which is part of the High-Luminosity LHC upgrade. The proof-of-principles experiments of this gas-jet monitor have now been developed into a prototype instrument which has been built for integration into the LHC ring and is now under phased installation for operation in the upcoming LHC run. This paper describes the challenges overcome to produce a gas-jet fluorescence monitor for the ultra-high vacuum accelerator environment. It also presents preliminary results from the installation of the instrument at CERN.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT048  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT054 A Modified Nomarski Interferometer to Study Supersonic Gas Jet Density Profiles 385
 
  • C. Swain, Ö. Apsimon, A. Salehilashkajani, C.P. Welsch, J. Wolfenden, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • Ö. Apsimon, A. Salehilashkajani, C. Swain, C.P. Welsch, J. Wolfenden, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the AWAKE-UK phase II project grant No. ST/T001941/1, the STFC Cockcroft core grant No. ST/G008248/1 and the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1.
Gas jet-based non-invasive beam profile monitors, such as those developed for the high luminosity Large Hadron Collider (HL-LHC) upgrade, require accurate, high resolution methods to characterise the supersonic gas jet density profile. This paper proposes a modified Nomarski interferometer to non-invasively study the behaviour of these jets, with nozzle diameters of 1 mm or less in diameter. It discusses the initial design and results, alongside plans for future improvements. Developing systems such as this which can image on such a small scale allows for improved monitoring of supersonic gas jets used in several areas of accelerator science, thus allowing for improvements in the accuracy of experiments they are utilised in.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT054  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT055 A Gas Jet Beam Profile Monitor for Beam Halo Measurement 389
 
  • O. Stringer, N. Kumar, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • N. Kumar, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1 and the STFC Cockcroft Institute core grant No. ST/G008248/1.
The gas jet beam profile monitor is a non-invasive beam monitor that is currently being commissioned at Cockcroft Institute. It utilises a supersonic gas curtain which transverses the beam at an angle of 45 degrees and measures beam-induced ionisation interactions of the gas to produce a 2D transverse beam profile image. This paper builds upon previously used single-slit skimmers and improves their ability to form the gas jet into a desired distribution for imaging beam halo. A skimmer device removes off-momentum gas particles and forms the jet into a dense thin curtain, suitable for transverse imaging of the beam. The use of a novel double-slit skimmer is shown to provide a mask-like void of gas over the beam core, increasing the relative intensity of the halo interactions for measurement. Such a non-invasive monitor would be beneficial to storage rings by providing real time beam characteristic measurements without affecting the beam. More specifically, beam halo behaviour is a key characteristic associated with beam losses within storage rings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT055  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT056 Commissioning of a Gas Jet Beam Profile Monitor for EBTS and LHC 393
 
  • H.D. Zhang, N. Kumar, A. Salehilashkajani, O. Sedláček, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Ady, T. Lefèvre, S. Mazzoni, I. Papazoglou, A. Rossi, G. Schneider, O. Sedláček, K. Sidorowski, R. Veness
    CERN, Meyrin, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • N. Kumar, A. Salehilashkajani, O. Sedláček, O. Stringer, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the HL-LHC-UK II project funded by STFC and CERN and the STFC Cockcroft core grant No. ST/G008248/1.
A gas jet beam profile monitor was designed for measuring the electron beam at the electron beam test stand (EBTS) for the Hollow electron lens (HEL) and the proton beam in the large hadron collider (LHC). It is partially installed in the LHC during the second long shutdown. The current monitor is tailored to the accelerator environment including vacuum, geometry, and magnetic field for both the EBTS and the LHC. It features a compact design, a higher gas jet density, and a wider curtain size for a better integration time and a larger detecting range. In this contribution, the commissioning of this monitor at the Cockcroft Institute will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT056  
About • Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK065 Design of a Passive Superconducting Harmonic Cavity for HALF Storage Ring 1378
 
  • Y. Wei, B. Du, G. Feng, D. Jia, J. Pang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Higher harmonic cavities, also known as Landau cavities, have been proposed to improve beam lifetime and provide Landau damping by lengthening the bunch without energy spread for stable operations of present and future low-emittance storage rings. This contribution presents design of a passive superconducting 3rd-harmonic cavity (super-3HC) for the planned Hefei Advanced Light Facility (HALF) at University of Science and Technology of China. It is designed to provide 0.43 MV at 1499.4 MHz for the nominal 2.2 GeV, 350 mA electron beam, and 1.44 MV main RF voltage in storage ring. Through optimizations it has a low R/Q < 45 Ohm, which has potential to achieve a good bunch lengthening. Higher-order-modes are strongly damped using a pair of room-temperature silicon carbide (SiC) rings to meet the requirement of beam instabilities. In addition, preliminary engineering design for the super-3HC cryomodule is also described in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK065  
About • Received ※ 03 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)