Paper | Title | Page |
---|---|---|
MOPOST029 | Fast Cycling FFA Permanent Magnet Synchrotron | 126 |
|
||
Funding: Work performed under the Contract Number DE-AC02-98CH10886 with the auspices of US Department of Energy We present a novel concept of the Fixed-Field-Alternating (FFA) small racetrack proton accelerator 10x6 size, with kinetic energy range between 30-250 MeV made of permanent magnets. The horizontal and vertical tunes are fixed within the energy range, as the magnets The combined function magnets have additional sextupole and octupole multipoles the chromatic corrections, providing very fast cycling with a frequency of 1.3 KHz. The injector is 30 MeV commercially available cyclotron with RF frequency of 65 MHz. The permanent magnet synchrotron RF frequency is 390 MHz and acceleration uses the phase jump scheme. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST029 | |
About • | Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 04 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOTK053 | RLAs with FFA Arcs for Protons and Electrons | 584 |
|
||
Funding: Authored in part by UT-Battelle, LLC, Jefferson Science Associates, LLC, and Brookhaven Science Associates, LLC under Contracts DE-AC05-00OR22725, DE-AC05-06OR23177, and DE-SC0012704 with the US DOE. Recirculating Linear Accelerators (RLAs) provide an efficient way of producing high-power, high-quality, continuous-wave hadron and lepton beams. However, their attractiveness had been limited by the cumbersomeness of multiple recirculating arcs and by the complexity of the spreader and recombiner regions. The latter problem sets one of the practical limitations on the maximum number of recirculations. We present an RLA design concept where the problem of multiple arcs is solved using the Fixed-Field Alternating gradient (FFA) design as in CBETA. The spreader/recombiner design is greatly simplified using an adiabatic matching approach. It allows for the spreader/recombiner function to be accomplished by a single beam line. The concept is applied to the designs of a high-power hadron accelerator being considered at ORNL and a CEBAF electron energy doubling project, FFA@CEBAF, being developed at Jefferson lab. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK053 | |
About • | Received ※ 10 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEOXGD2 | Electron Accelerator Lattice Design for LHeC with Permanent Magnets | 1587 |
|
||
Funding: Work performed under the Contract Number DE-AC02-98CH10886 with the auspices of US Department of Energy We present a new ’green energy’ approach to the Energy Recovery Linac (ERL) the future Electron Ion Collider at LHeC using single beam line made of very strong focusing combined function permanent magnets and the Fixed Field Alternating Linear Gradient (FFA-LG) principle. We are basing our design on recent very successful commissioning results of the Cornell University and Brookhaven National Laboratory ERL Test Accelerator-CBETA. |
||
![]() |
Slides WEOXGD2 [19.845 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOXGD2 | |
About • | Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 02 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOST023 | Current Status of the FFA@CEBAF Energy Upgrade Study | 2494 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. This work will describe the current status of the FFA@CEBAF energy upgrade feasibility studies. Technical updates are given, but more specific details are left to separate contributions. Specifically, this work will discuss improvements to the FFA arcs, a new recirculating injector proposal, and numerous modifications to the current 12 GeV CEBAF which will be required, such as the spreaders and recombiners architecture, splitters (time-of-flight chicanes), the extraction system, and the hall lines. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST023 | |
About • | Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |