Paper | Title | Page |
---|---|---|
TUPOPT037 | LCLS Multi-Bunch Improvement Plan: First Results | 1092 |
|
||
LCLS copper linac primarily operates in a single bunch mode with a repetition rate of 120 Hz. Presently, several in-house projects and LCLS user experiments require double- and multi-pulse trains of X-rays, with inter-pulse delay spanning between 0.35 and 220 ns. We discuss beam control improvements to the copper linac using ultra-fast stripline kicker, as well as additional photon diagnostics. We especially focus on a case of double-pulse mode, with 218 ns separation. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT037 | |
About • | Received ※ 12 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 10 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEOXSP3 | mm-Wave Structure Development for High Gradient Acceleration | 1606 |
|
||
Funding: This work is supported by U.S. Department of Energy Contract No. DE-AC02-76SF00515, SLAC LDRD project 21-014 and Internal Agency Agreement 21-0007-IA (MIPR HR0011150657). We report on the design of mm-wave accelerator structures operating near 100 GHz. Simulations of the cavity geometry and RF coupling are performed in ANSYS-HFSS and using SLAC’s parallel electromagnetic code suite ACE3P. We present experimental results for structures fabricated from copper, niobium, and copper plated with NbTiNi. We report on techniques for tuning these high frequency structures, as well as preliminary brazing results. A mm-wave accelerator cavity enables not only a high achievable gradient due to higher breakdown thresholds, but also reduced fill times which decrease pulsed heating and allow for higher repetition rates. We discuss the potential advantages and challenges for applications requiring ultra-compact structures. |
||
![]() |
Slides WEOXSP3 [1.800 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOXSP3 | |
About • | Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |