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THz and mm-Wave Accelerators

Can sustain higher gradients due to higher

breakdown thresholds

Reduced fill times result in decreased pulsed
heating and allow for higher repetition rates

Increased shunt impedance and RF efficiency

Ultra compact structures
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Recent developments in THz and mm-Wave Accelerators
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Field is now a very active area of research: o g Acceleraling gradient~ 10MVIm
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* First demonstration of THz driven electron Rep, rate ~ iz
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High power testing of externally driven W-band structure
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* Previous work utilized split-block accelerator fabrication at mm-wave scale
Achieved gradient up to 225 MV/m for 600 kW, 10 ns pulses in central cell
« Demonstrated efficient coupling with quasi-optical transport and adiabatic horn

with mode converter
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Fabrication of mm-wave cavities

« Using same 3-cell standing wave 1T-mode
structure design

* Frequency tuning initially accomplished with
shims

» Cavities fabricated in copper, niobium, and
copper plated with NbTiNi

« Cold test performed using network '20

analyzer with coaxial probes
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Development of targeted tuning technique
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- Cell period (~1.6 mm) is too small for VTD';ra”SC?Vler Vector Network
. . . . XRX) moduile
conventional approach with tuning pins ‘(w-;) T f‘ﬂaw\zer (VNA) _

brazed onto each cavity wall | B
« Slot was machined into structure halves g : |
leaving only a 1 mm wall thickness
* Demountable tuning pin was fabricated

with alignment holes for each cavity
position

Coaxial 3-cell mm- VDI Receive only
probes  wave structure (Rx) module?




Tuning measurements

S21 (dB)

« Cells were tuned in sequence
* Active monitoring with VNA

*  Observed up to 3 GHz shift in
resonant frequencies

* Pushed cavities to the point of

deformation to find maximum range
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3D microscope images of deformed cavity

Without tuning After tuning




Tuning down in frequency
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* Techniques under investigation: Initial Test of Pressing on Wall
*  Shimming :
* Temperature control
* Brazed tuning pin on structure wall
* Pressing on wall from inside

* Challenges:

* Tuning while disassembled, not - . . ¢ _
compatible with tuning after brazing Observed average shift of 47 MHz

* Reproducibility/reversibility 57207
* Understanding RF properties — effect E’-am;
on surface G -
* Tuning range 100 102 104 106 108 110

frequency (GHz)



High shunt impedance cavity design

« Cavity optimization with re-entrant nose-cones
increases the shunt impedance to ~440 MQ/m

* Need to transition from power coupling on-axis
to side-coupled cells

4-cell prototype design modeled in HFSS

« Developed to test fabrication of side-coupled
cavities with re-entrant nose cone

* Waveguide routing to each cell individually

* Power distribution manifold in subsequent
design

» Greatly reduced coupling between cells
compared to original design
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Cold-tests of 4-cell side-coupled prototype
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Extended linac with power distribution o

» 16-cell design fed by parallel
manifolds

«  Will fabricate in split-block
configuration

« 1MW case:
* ~3MeV gain
* ~136 MeV/m gradient
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Modeling the distributed coupling linac

Simulations of the
distributed coupling
manifold first modeled in
ANSYS-HFSS then
optimized using SLAC’s — 4.0e+04
parallel electromagnetic
code suite ACE3P

— -4.0e+04



Quasi-optical coupling horn with mm-wave linac
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* Horn couples into

WR-10 waveguide :
before routing
through a y-split to ;

parallel distribution
manifolds

* During cold test can
utilize 2 tuning pins
per cell




Outlook: High Power Test
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» Partnered with MIT to test 110 GHz field emission gun

« Collaborating with AFRL to test mm-wave structures at 94
GHz with active pulse compression

2.37 mm

Input from gyrotron Yaw/

THz gun high power experimental setup. (1) gun assembly, (2)
high power input window, (3) solenoid, (4) energy spectrometer
microchannel plate detector, (5) bending dipole, (6) on-axis
microchannel plate detector, (7) Faraday cup, and (8) ion
pump. The acceleration and THz input directions are shown.
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Summary

(1)
I
)

Mm-wave structures offer a path to ultra-compact
high-gradient accelerators
The research presented here adapts conventional
accelerator techniques for the mm-wave regime

* Cavity tuning

* Distributed power coupling
These elements will be combined for high power
testing of an extended mm-wave linac
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