Author: Poyet, A.
Paper Title Page
MOOYSP1 Impact of Longitudinal Gradient Dipoles on Storage Ring Performance 30
 
  • F. Zimmermann, Y. Papaphilippou, A. Poyet
    CERN, Meyrin, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730 (iFAST).
Innovative new magnets with longitudinally varying dipole field are being produced for installation in a few modern light-source storage rings. We investigate some of the associated beam-dynamics issues, in particular the photon spectrum and quantum fluctuation associated with such magnets, and we study whether the resulting equilibrium emittance may deviate from the value expected in the long-magnet limit.
 
slides icon Slides MOOYSP1 [2.364 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOOYSP1  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT013 Emittance Reduction with the Variable Dipole for the ELETTRA 2.0 Ring 2586
 
  • A. Poyet, Y. Papaphilippou
    CERN, Meyrin, Switzerland
  • M.A. Domínguez, F. Toral
    CIEMAT, Madrid, Spain
  • R. Geometrante, E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R. Geometrante
    KYMA, Trieste, Italy
 
  ELETTRA is a 2/2.4 GeV third-generation electron storage ring, located near Trieste, Italy. In view of a substantial increase of the machine performance in terms of brilliance, the so-called ELETTRA 2.0 upgrade is currently on-going. This upgrade is based on a 6-bends achromat, four dipoles of which having a longitudinally variable field. So far, those dipoles are foreseen to provide a field with a two step profile. The VAriable Dipole for the ELETTRA Ring (VADER) task, driven by the I.FAST European project, aims at developing a new dipole design based on a trapezoidal shape of the bending radius, which would allow for a further reduction of the horizontal emittance. A prototype of this magnet should be designed by the CIEMAT laboratory and built by KYMA company. This paper discusses the new dipole field specification and describes the corresponding optics optimization that was performed in order to reduce at best the emittance of the ELETTRA ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT013  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)