Paper | Title | Page |
---|---|---|
MOPLXGD1 | The SuperKEKB Has Broken the World Record of the Luminosity | 1 |
|
||
The SuperKEKB broke the world record of the luminosity in June 2020 in the Phase 3 operation. The luminosity has been increasing since then and the present highest luminosity is 4.65 x 1034 cm-2s-1 with βy* of 1 mm. The increase of the luminosity was brought with an application of crab waist, by increasing beam currents and by other improvements in the specific luminosity. In this paper, we describe what we have achieved and what we are struggling with. Finally, we mention a future plan briefly. | ||
![]() |
Slides MOPLXGD1 [6.235 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPLXGD1 | |
About • | Received ※ 10 June 2022 — Accepted ※ 08 July 2022 — Issue date ※ 10 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOZSP2 |
Chromatic X-Y Coupling Correction by Tilting Sextupole Magnets in the SuperKEKB Positron Ring | |
|
||
Chromatic x-y coupling correction at the interaction point was carried out using skew sextupole field created by tilting the sextupole magnets in the SuperKEKB positron ring. Twenty four sextupole magnets are mounted on a tilting table and their tilt angles can be varied form - 30 degree to + 30 degree remotely to control the ratio of the skew to normal sextupole magnetic field components. In the 2021c run, one of the chromatic coupling parameters was varied using different setups of the tilting angles of the 24 sextupole magnets for the first time in a collider. It was found that the emittance growth at the primary (nux-nuy-nus=n) and secondary (nux-nuy-2nus=n) synchro-beta resonance lines can be controlled by tilting the sextupole magnets. Luminosity increase followed after optimizing the chromatic coupling parameters and finding a better tune working point. The study results are summarized in the paper. | ||
![]() |
Slides TUOZSP2 [19.499 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOST017 | Design of a Collimation Section for the FCC-ee | 1722 |
|
||
The design parameters of the FCC-ee foresee operation with a total stored beam energy of about 20 MJ, exceeding those of previous lepton colliders by almost two orders of magnitude. Given the inherent damage potential, a halo collimation system is studied to protect the machine hardware, in particular superconducting equipment such as the final focus quadrupoles, from sudden beam loss. The different constraints that led to dedicating one straight section to collimation will be outlined. In addition, a preliminary layout and optics for a collimation insertion are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST017 | |
About • | Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT063 | The FCCee Pre-Injector Complex | 2007 |
|
||
The international FCC study group published in 2019 a Conceptual Design Report for an electron-positron collider with a centre-of-mass energy from 90 to 365 GeV with a beam currents of up to 1.4 A per beam. The high beam current of this collider create challenging requirements on the injection chain and all aspects of the linac need to be carefully reconsidered and revisited, including the injection time structure. The entire beam dynamics studies for the full linac, damping ring and transfer lines are major activities of the injector complex design. A key point is that any increase of positron production and capture efficiency reduces the cost and complexity of the driver linac, the heat and radiation load of the converter system, and increases the operational margin. In this paper we will give an overview of the status of the injector complex design and introduce the new layout that has been proposed by the study group working in the context of the CHART collaboration. In this framework, furthermore, we also present the preliminary studies of the FCC-ee positron source highlighting the main requirements and constraints. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT063 | |
About • | Received ※ 11 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 29 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT017 | First Optics Design for a Transverse Monochromatic Scheme for the Direct S-Channel Higgs Production at FCC-ee Collider | 1878 |
|
||
The FCC-ee collider baseline foresees four different energy operation modes: Z, WW, H(ZH) and ttbar. An optional fifth mode, called s-channel Higgs production mode, could allow the measurement of the electron Yukawa coupling, in dedicated runs at 125 GeV centre-of-mass energy, provided that the centre-of-mass energy spread, can be reduced by at least an order of magnitude (5-10 MeV). The use of a special collision technique: a monochromatization scheme is one way to accomplish it. There are several methods to implement a monochromatization scheme. One method, named transverse monochromatization scheme, consists of introducing a dispersion different from zero but opposite sign for the two colliding beams at the Interaction Point (IP); In this paper we will report about the first attempt to design a new optics to implement a transverse monochromatic scheme for the FCC-ee Higgs production totally compatible with the standard mode of operation without dispersion at the IP. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT017 | |
About • | Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 27 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |