Author: Noll, M.-D.
Paper Title Page
MOPOPT024 Measuring the Coherent Synchrotron Radiation Far Field with Electro-Optical Techniques 292
 
  • C. Widmann, M. Brosi, E. Bründermann, S. Funkner, A.-S. Müller, M.J. Nasse, G. Niehues, M.-D. Noll, M.M. Patil, M. Reißig, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • M. Brosi
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Funding: M. M. P. acknowledges the support by the DFG-funded Doctoral School KSETA. C. W. achnowledges funding by BMBF contract number 05K19VKD.
For measuring the temporal profile of the coherent synchrotron radiation (CSR) a setup based on electro-optical spectral decoding (EOSD) will be installed as part of the sensor network at the KIT storage ring KARA (Karlsruhe Research Accelerator). The EOSD technique allows a single-shot, phase sensitive measurement of the complete spectrum of the CSR far field radiation at each turn. Therefore, the dynamics of the bunch evolution, e.g. the microbunching, can be observed in detail. Especially, in synchronized combination with the already established near-field EOSD, this method could provide deeper insights in the interplay of bunch profile and CSR generation for each individual electron bunch. For a successful implementation of the EOSD single shot setup, measurements with electro-optical sampling (EOS) are performed. With EOS the THz pulse shape is scanned over several turns by shifting the delay of laser and THz pulse. In this contribution different steps towards the installation of the EOSD far field setup are summarized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT024  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT026 Beam Diagnostics for the Storage Ring of the cSTART Project at KIT 300
 
  • D. El Khechen, E. Bründermann, A. Mochihashi, A.-S. Müller, M.-D. Noll, A.I. Papash, R. Ruprecht, P. Schreiber, M. Schuh, J.L. Steinmann
    KIT, Eggenstein-Leopoldshafen, Germany
 
  In the framework of the compact STorage ring for Accelerator Research and Technology (cSTART) project, which will be realized at Karlsruhe Institute of Technology (KIT), a Very Large Acceptance compact Storage Ring (VLA-cSR) is planned to study the injection and the storage of 50 MeV, ultra-short (sub-ps) electron bunches from a laser plasma accelerator (LPA) and the linac-based test facility FLUTE. For such a storage ring, where a single bunch with a relatively wide range of bunch charge (1 pC - 1000 pC ) and energy spread (10’4 - 10’2) will circulate at a relatively high revolution frequency (7 MHz), the choice of beam diagnostics is very delicate. In this paper, we would like to discuss several beam diagnostics options for the storage ring and to briefly report on several tests that have been or are planned to be realized in our existing facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT026  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT027 Transverse and Longitudinal Profile Measurements at the KARA Booster Synchrotron 304
 
  • D. El Khechen, E. Blomley, E. Bründermann, E. Huttel, A. Mochihashi, A.-S. Müller, M.-D. Noll, R. Ruprecht, P. Schreiber, M. Schuh, J.L. Steinmann, C. Widmann
    KIT, Karlsruhe, Germany
 
  In the booster synchrotron of the Karlsruhe Research Accelerator (KARA), the beam is injected from the microtron at 53 MeV and ramped up to 500 MeV. Though the injected beam current from the microtron to the booster seems good, the injection efficiency into the booster is currently low due to various effects. Consequently, an upgrade of the whole beam diagnostics system is taking place in the booster, in order to improve the injection efficiency through understanding the loss mechanisms and the behavior of bunches. Among these diagnostics tools are beam loss monitors, a transverse profile monitor and a longitudinal profile monitor. In this paper, we will describe the setups used for bunch profile measurements in both transverse and longitudinal planes and report on first data analysis results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT027  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST007 Slow-Control Loop to Stabilize the RF Power of the FLUTE Electron Gun 2449
 
  • M.-D. Noll, A. Böhm, J. Jelonek, I. Križnar, O. Manzhura, A.-S. Müller, R. Ruprecht, M. Schuh, N.J. Smale
    KIT, Karlsruhe, Germany
 
  The linear accelerator FLUTE (Far Infrared Linac and Test Experiment) at KIT serves as a test facility for accelerator research and for the generation of ultra-intense coherent THz radiation. To achieve stable THz photon energy and optimal beam trajectory, the energy of the electrons emitted from the RF photo-injector must be stable. The accelerating voltage of the RF cavity has been shown to be a significant influencing factor. Here, we report on the development of a slow closed-loop feedback system to stabilize the RF power and thus the accelerating voltage in the RF photo-injector cavity. With this closed-loop feedback system the relative standard deviation of the RF power in the cavity can be improved by 8.5 %.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST007  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)