Author: Niehues, G.
Paper Title Page
MOPOPT017 Terahertz Sampling Rates with Photonic Time-Stretch for Electron Beam Diagnostics 263
 
  • O. Manzhura, E. Bründermann, M. Caselle, S.A. Chilingaryan, T. Dritschler, S. Funkner, A. Kopmann, A.-S. Müller, M.J. Nasse, G. Niehues, M.M. Patil, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • S. Bielawski, E. Roussel, C. Szwaj
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
  • S. Bielawski, E. Roussel, C. Szwaj
    PhLAM/CERLA, Villeneuve d’Ascq, France
 
  Funding: Supported by the Helmholtz Program-Oriented Funding (PoF), research program Matter and Technologies (Detector Technology and System), ANR-DFG ULTRASYNC funding program, CEMPI LABEX and Wavetech CPER.
To understand the underlying complex beam diagnostic often large numbers of single-shot measurements must be acquired continuously over a long time with extremely high temporal resolution. Photonic time-stretch is a measurement method that is able to overcome speed limitations of con- ventional digitizers and enable continuous ultra-fast single- shot terahertz spectroscopy with refresh rates of trillions of consecutive frames. In this contribution, a novel ultra- fast data sampling system based on photonic time-stretch is presented and the performance is discussed. THERESA (TeraHErtz REadout SAmpling) is a data acquisition system based on the recent ZYNQ-RFSoC family. THERESA has been developed with an analog bandwidth up to 20 GHz and a sampling rate up to 90 GS/s. When combined with the photonic time-stretch setup, the system will be able to sample a THz signal with an unprecedented frame rate of 8 TS/s. Continuous acquisition for long observation times will open up new possibilities in the detection of rare events in accelerator physics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT017  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT024 Measuring the Coherent Synchrotron Radiation Far Field with Electro-Optical Techniques 292
 
  • C. Widmann, M. Brosi, E. Bründermann, S. Funkner, A.-S. Müller, M.J. Nasse, G. Niehues, M.-D. Noll, M.M. Patil, M. Reißig, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • M. Brosi
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Funding: M. M. P. acknowledges the support by the DFG-funded Doctoral School KSETA. C. W. achnowledges funding by BMBF contract number 05K19VKD.
For measuring the temporal profile of the coherent synchrotron radiation (CSR) a setup based on electro-optical spectral decoding (EOSD) will be installed as part of the sensor network at the KIT storage ring KARA (Karlsruhe Research Accelerator). The EOSD technique allows a single-shot, phase sensitive measurement of the complete spectrum of the CSR far field radiation at each turn. Therefore, the dynamics of the bunch evolution, e.g. the microbunching, can be observed in detail. Especially, in synchronized combination with the already established near-field EOSD, this method could provide deeper insights in the interplay of bunch profile and CSR generation for each individual electron bunch. For a successful implementation of the EOSD single shot setup, measurements with electro-optical sampling (EOS) are performed. With EOS the THz pulse shape is scanned over several turns by shifting the delay of laser and THz pulse. In this contribution different steps towards the installation of the EOSD far field setup are summarized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT024  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT025 Development of an Electro-Optical Longitudinal Bunch Profile Monitor at KARA Towards a Beam Diagnostics Tool for FCC-ee 296
 
  • M. Reißig, M. Brosi, E. Bründermann, S. Funkner, B. Härer, A.-S. Müller, G. Niehues, M.M. Patil, R. Ruprecht, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: The Future Circular Collider Innovation Study (FCCIS) project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 951754. M. R. and M. M. P. acknowledge the support by the Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology". C. W. achnowledges funding by BMBF contract number 05K19VKD.
The Karlsruhe Research Accelerator (KARA) at KIT features an electro-optical (EO) near-field diagnostics setup to conduct turn-by-turn longitudinal bunch profile measurements in the storage ring using electro-optical spectral decoding (EOSD). Within the Future Circular Collider Innovation Study (FCCIS) an EO monitor using the same technique is being conceived to measure the longitudinal profile and center-of-charge of the bunches in the future electron-positron collider FCC-ee. This contribution provides an overview of the EO near-field diagnostics at KARA and discusses the development and its challenges towards an effective beam diagnostics concept for the FCC-ee.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT025  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)