Author: Manzhura, O.
Paper Title Page
MOPOPT017 Terahertz Sampling Rates with Photonic Time-Stretch for Electron Beam Diagnostics 263
 
  • O. Manzhura, E. Bründermann, M. Caselle, S.A. Chilingaryan, T. Dritschler, S. Funkner, A. Kopmann, A.-S. Müller, M.J. Nasse, G. Niehues, M.M. Patil, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • S. Bielawski, E. Roussel, C. Szwaj
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
  • S. Bielawski, E. Roussel, C. Szwaj
    PhLAM/CERLA, Villeneuve d’Ascq, France
 
  Funding: Supported by the Helmholtz Program-Oriented Funding (PoF), research program Matter and Technologies (Detector Technology and System), ANR-DFG ULTRASYNC funding program, CEMPI LABEX and Wavetech CPER.
To understand the underlying complex beam diagnostic often large numbers of single-shot measurements must be acquired continuously over a long time with extremely high temporal resolution. Photonic time-stretch is a measurement method that is able to overcome speed limitations of con- ventional digitizers and enable continuous ultra-fast single- shot terahertz spectroscopy with refresh rates of trillions of consecutive frames. In this contribution, a novel ultra- fast data sampling system based on photonic time-stretch is presented and the performance is discussed. THERESA (TeraHErtz REadout SAmpling) is a data acquisition system based on the recent ZYNQ-RFSoC family. THERESA has been developed with an analog bandwidth up to 20 GHz and a sampling rate up to 90 GS/s. When combined with the photonic time-stretch setup, the system will be able to sample a THz signal with an unprecedented frame rate of 8 TS/s. Continuous acquisition for long observation times will open up new possibilities in the detection of rare events in accelerator physics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT017  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST007 Slow-Control Loop to Stabilize the RF Power of the FLUTE Electron Gun 2449
 
  • M.-D. Noll, A. Böhm, J. Jelonek, I. Križnar, O. Manzhura, A.-S. Müller, R. Ruprecht, M. Schuh, N.J. Smale
    KIT, Karlsruhe, Germany
 
  The linear accelerator FLUTE (Far Infrared Linac and Test Experiment) at KIT serves as a test facility for accelerator research and for the generation of ultra-intense coherent THz radiation. To achieve stable THz photon energy and optimal beam trajectory, the energy of the electrons emitted from the RF photo-injector must be stable. The accelerating voltage of the RF cavity has been shown to be a significant influencing factor. Here, we report on the development of a slow closed-loop feedback system to stabilize the RF power and thus the accelerating voltage in the RF photo-injector cavity. With this closed-loop feedback system the relative standard deviation of the RF power in the cavity can be improved by 8.5 %.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST007  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST008 Status of the FLUTE RF System Upgrade 2452
 
  • A. Malygin, O. Manzhura, A.-S. Müller, R. Ruprecht, M. Schuh, N.J. Smale
    KIT, Eggenstein-Leopoldshafen, Germany
 
  FLUTE (Ferninfrarot Linac- Und Test-Experiment) is a compact versatile linac-based accelerator test facility at KIT. Its main goal is to serve as a platform for a variety of accelerator studies and to generate strong ultra-short THz pulses for photon science. It will also serve as an injector for a Very Large Acceptance compact Storage Ring (VLA-cSR), which will be realized at KIT in the framework of the compact STorage Ring for Accelerator Research and Technology (cSTART) project. To achieve acceleration of electrons in the RF photoinjector and LINAC (from FLUTE) with high stability, it is necessary to provide stable RF power. For this goal, an upgrade of the existing RF system design has been proposed and is currently being implemented. This contribution will report on the updated RF system design and the commissioning status of the new RF system components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST008  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)