Author: Kleindienst, R.
Paper Title Page
TUPOTK005 Mitigation of Parasitic Losses in the Quadrupole Resonator Enabling Direct Measurements of Low Residual Resistances of SRF Samples 1196
 
  • S. Keckert, R. Kleindienst, J. Knobloch, F. Kramer, O. Kugeler, D.B. Tikhonov
    HZB, Berlin, Germany
  • W. Ackermann, H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • X. Jiang, A.Ö. Sezgin, M. Vogel
    University Siegen, Siegen, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  The quadrupole resonator (QPR) is a dedicated sample-test cavity for the RF characterization of superconducting samples in a wide temperature, RF field and frequency range. Its main purpose are high resolution measurements of the surface resistance with direct access to the residual resistance thanks to the low frequency of the first operating quadrupole mode. Besides the well-known high resolution of the QPR, a bias of measurement data towards higher values has been observed, especially at higher harmonic quadrupole modes. Numerical studies show that this can be explained by parasitic RF losses on the adapter flange used to mount samples into the QPR. Coating several micrometer of niobium on those surfaces of the stainless steel flange that are exposed to the RF fields significantly reduced this bias, enabling a direct measurement of a residual resistance smaller than 5 nano-Ohm at 2 K and 413 MHz.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK005  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)