Author: Jaikaew, P.
Paper Title Page
TUPOPT029 Infrared Free-Electron Laser Project in Thailand 1070
 
  • S. Rimjaem, N. Chaisueb, P. Kitisri, K. Kongmali, E. Kongmon, P. Nanthanasit, S. Pakluea, J. Saisut, S. Sukara, K. Techakaew, C. Thongbai
    Chiang Mai University, Chiang Mai, Thailand
  • P. Apiwattanakul, P. Jaikaew, W. Jaikla, N. Kangrang
    Chiang Mai University, PBP Research Facility, Chiang Mai, Thailand
  • M. Jitvisate
    Suranaree University of Technology, Nakhon Ratchasima, Thailand
  • M.W. Rhodes
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
 
  The infrared free-electron laser (IR FEL) project is established at Chiang Mai University in Thailand with the aim to provide experimental stations for users utilizing accelerator-based terahertz (THz) and mid-infrared (MIR) radiation. Main components of the system include a thermionic RF gun, an alpha magnet as a bunch compressor and energy filter, a standing-wave RF linac, a THz transition radiation (THz-TR) station, two magnetic bunch compressors and beamlines for MIR/THz FEL. The system commissioning is ongoing to produce the beams with proper properties. Simulation results suggest that the oscillator MIR-FEL with wavelengths of 9.5-16.6 um and pulse energies of 0.15-0.4 uJ can be produced from 60-pC electron bunches with energy of 20-25 MeV. The super-radiant THz-FEL with frequencies of 1-3 THz and 700 kW peak power can be produced from 10-16 MeV electron bunches with a charge of 50 pC and a length of 200-300 fs. Furthermore, the THz-TR with a spectral range of 0.3-2.5 THz and a pulse power of up to 1.5 MW can be obtained. The MIR/THz FEL will be used as high-brightness light source for pump-probe experiments, while the coherent THz-TR will be used in time-domain spectroscopy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT029  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS047 Design of Radiation Shielding for the PBP-CMU Electron Linac Laboratory 3073
SUSPMF132   use link to see paper's listing under its alternate paper code  
 
  • P. Jaikaew, N. Khangrang
    Chiang Mai University, PBP Research Facility, Chiang Mai, Thailand
  • M. Jitvisate
    Suranaree University of Technology, Nakhon Ratchasima, Thailand
  • S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
  • S. Rimjaem
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
 
  The local radiation shielding is designed for the electron linear accelerator beam dump at the PBP-CMU Electron Linac Laboratory (PCELL) with the aim to control the annual ambient dose equivalent during the operation. The study of radiation generation and design of radiation shielding is conducted based on the Monte Carlo simulation toolkit GEANT4. The study results include an annual ambient dose equivalent map and design of local shielding for the first bam dump downstream the linac section. With this design, the leaking radiation outside the accelerator hall is completely blocked and the average annual ambient dose equivalent on the rooftop of the hall is within the IAEA safety limit for the supervised area. The shielding model will then be used as a guideline for the construction in the near future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS047  
About • Received ※ 07 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)