Author: England, R.J.
Paper Title Page
MOIYGD1 Progress in Developing an Accelerator on a Chip 16
 
  • R.J. England
    SLAC, Menlo Park, California, USA
  • R.L. Byer
    Stanford University, Stanford, California, USA
  • P. Hommelhoff
    University of Erlangen-Nuremberg, Erlangen, Germany
 
  Acceleration of particles in photonic structures fabricated using semiconductor manufacturing techniques and driven by ultrafast solid state lasers is a new and promising approach to developing future generations of compact particle accelerators. Substantial progress has been made in this area in recent years, fueled by a growing international collaboration of universities, national laboratories, and companies. Performance of these micro-accelerator devices is ultimately limited by laser-induced material breakdown limits, which can be substantially higher for optically driven dielectrics than for radio-frequency metallic cavities traditionally used in modern particle accelerators, allowing for 1 to 2 order of magnitude increase in achievable accelerating fields. The lasers required for this approach are commercially available with moderate (microJoule class) pulse energies and repetition rates in the MHz regime. We summarize progress to date and outline potential near-term applications and offshoot technologies.  
slides icon Slides MOIYGD1 [13.851 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOIYGD1  
About • Received ※ 03 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST056 Multi-Objective Bayesian Optimization at SLAC MeV-UED 995
 
  • F. Ji, A.L. Edelen, R.J. England, P.L. Kramer, D. Luo, C.E. Mayes, M.P. Minitti, S.A. Miskovich, M. Mo, A.H. Reid, R.J. Roussel, X. Shen, X.J. Wang, S.P. Weathersby
    SLAC, Menlo Park, California, USA
 
  SLAC MeV-UED, part of the LCLS user facility, is a powerful ’electron camera’ for the study of ultrafast molecular structural dynamics and the coupling of electronic and atomic motions in a variety of material and chemical systems. The growing demand of scientific applications calls for rapid switching between different beamline configurations for delivering electron beams meeting specific user run requirements, necessitating fast online tuning strategies to reduce set up time. Here, we utilize multi-objective Bayesian optimization(MOBO) for fast searching the parameter space efficiently in a serialized manner, and mapping out the Pareto Front which gives the trade-offs between key beam parameters, i.e., spot size, q-resolution, pulse length, pulse charge, etc. Algorithm, model deployment and first test results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST056  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)