Author: Drees, K.A.
Paper Title Page
MOPOTK046 Design Concept for a Second Interaction Region for the Electron-Ion Collider 564
 
  • B.R. Gamage, V. Burkert, R. Ent, Y. Furletova, D.W. Higinbotham, T.J. Michalski, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, C. Weiss, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • E.C. Aschenauer, J.S. Berg, K.A. Drees, A. Jentsch, A. Kiselev, C. Montag, R.B. Palmer, B. Parker, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • P. Nadel-Turonski
    SBU, Stony Brook, New York, USA
 
  Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177, Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and UT-Battelle, LLC, under contract No. DE-AC05-00OR22725
In addition to the day-one primary Interaction Region (IR), the design of the Electron Ion Collider (EIC) must support operation of a 2nd IR potentially added later. The 2nd IR is envisioned in an existing experimental hall at RHIC IP8, compatible with the same beam energy combinations as the 1st IR over the full center of mass energy range of ~20 GeV to ~140 GeV. The 2nd IR is designed to be complementary to the 1st IR. In particular, a secondary focus is added in the forward ion direction of the 2nd IR hadron beamline to optimize its capability in detecting particles with magnetic rigidities close to those of the ion beam. We provide the current design status of the 2nd IR in terms of parameters, magnet layout and beam dynamics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK046  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIXGD1 EIC Beam Dynamics Challenges 1576
 
  • D. Xu, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, W.F. Bergan, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, C. Montag, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, USA
  • A. Blednykh, Y. Luo, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The Electron Ion Collider aims to produce luminosities of 1034 cm-2s-1 . The machine will operate over a broad range of collision energies with highly polarized beams. The coexistence of highly radiative electrons and nonradiative ions produce a host of unique effects. Strong hadron cooling will be employed for the final factor of 3 luminosity boost.  
slides icon Slides WEIXGD1 [3.952 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIXGD1  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOYGD2
Results of the Coherent Electron Cooling Experiment at RHIC  
 
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • Z. Altinbas, S.J. Brooks, J.C. Brutus, Z.A. Conway, L. Cultrera, A.J. Curcio, L. DeSanto, A. Di Lieto, K.A. Drees, W. Fischer, M. Gaowei, X. Gu, M. Harvey, T. Hayes, H. Huang, M. Ilardo, P. Inacker, J.P. Jamilkowski, Y.C. Jing, P.K. Kankiya, R. Karl, D. Kayran, J. Kewisch, J. Ma, G.J. Mahler, G.J. Marr, A. Marusic, R.J. Michnoff, M.G. Minty, G. Narayan, L.K. Nguyen, M.C. Paniccia, I. Pinayev, T. Rao, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, M.P. Sangroula, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, J. Skaritka, L. Smart, A. Sukhanov, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, G. Wang, D. Weiss, B.P. Xiao, A. Zaltsman
    BNL, Upton, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Coherent electron Cooling (CeC) experiment aims on demonstrating cooling during this RHIC run, which will be concluded in April 2022. In this talk we will present results of the CeC experiment with special focus won the use and the control of the broad-band micro-bunching Plasma Cascade Amplifier with bandwidth of 15 THz. We will also discuss connection of this experiment with the developing the CeC cooler for future Electron Ion Collider.
 
slides icon Slides WEOYGD2 [18.592 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST031 RHIC Polarized Proton Operation in Run 22 1765
 
  • V. Schoefer, E.C. Aschenauer, D. Bruno, K.A. Drees, W. Fischer, C.J. Gardner, K. Hock, H. Huang, R.L. Hulsart, C. Liu, Y. Luo, I. Marneris, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, J. Sandberg, W.B. Schmidke, F. Severino, T.C. Shrey, P. Thieberger, J.E. Tuozzolo, M. Valette, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno
    BNL, Upton, New York, USA
 
  The Relativistic Heavy Ion Collider (RHIC) Run 22 physics program consisted of collisions with vertically po- larized proton beams at a single collision point (the STAR detector). During initial startup of the collider, power out- ages damaged two of the coils in one of the RHIC helical dipole snake magnets used for polarization preservation in the Blue ring. That snake was reconfigured for use as a partial snake. We will outline some of the remediating mea- sures taken to maximize polarization transmission in this configuration. These measures included changing the col- liding beam energy from 255 GeV to 254.2 GeV to adjust the spin closed orbit at store and adjustment of the field in the other helical dipole in the Blue ring to improve injection spin matching. Later in the run, the primary motor gener- ator for the AGS (the injector to RHIC) failed and a lower voltage backup had to be used, resulting in a period of lower polarization. Other efforts include detailed measurement of the stable spin direction at store and the commissioning of a machine protection relay system to prevent spurious firing of the RHIC abort kickers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST031  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT032 Summary of the 3-year Beam Energy Scan II operation at RHIC 1908
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Beam Energy Scan phase II (BES-II) operation in the Relativistic Heavy Ion Collider (RHIC), aiming to explore the phase transition between quark-gluon plasma (QGP) and hadronic gas, exceeded the goal of a four-fold increase in the average luminosity over the range of five gold beam energies (9.8, 7.3, 5.75, 4.59 and 3.85 GeV/nucleon) compared to those achieved during Beam Energy Scan phase I (BES-I). We will present the achievements in BES-II together with a summary of the measures taken to improve RHIC performance in the presence of several beam dynamics effects, and details on improvements made during the operation at 3.85 GeV/nucleon in 2021.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT032  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT033 Report of RHIC Beam Operation in 2021 1912
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The first priority of RHIC operation in 2021 was the Au+Au collisions at 3.85 GeV/nucleon, which is the lowest energy to complete the 3-year Beam Energy Scan II physics program, with RF-based electron cooling. In addition, RHIC also operated for several other physics programs including fixed target experiments, O+O at 100 GeV/nucleon, Au+Au at 8.65 GeV/nucleon, and d+Au at 100 GeV/nucleon. This report presents the operational experience and the results from RHIC operation in 2021. With Au+Au collisions at 3.85 GeV/nucleon reported in a separate report, this paper focuses on the operation conditions for the other programs mentioned above.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT033  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT034 Reconfiguration of RHIC Straight Sections for the EIC 1916
 
  • C. Liu, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, S. Verdú-Andrés, D. Weiss, D. Xu
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Electron-Ion Collider (EIC) will be built in the existing Relativistic Heavy Ion Collider (RHIC) tunnel with the addition of electron acceleration and storage rings. The two RHIC rings will be reconfigured as a single Hadron Storage Ring (HSR) for accelerating and storing ion beams. The proton beam energy will be raised from 255 to 275 GeV to achieve the desired center-of-mass energy range: 20’140 GeV. It is also mandatory to operate the HSR with a constant revolution frequency over a large energy range (41’275 GeV for protons) to synchronize with the Electron Storage Ring (ESR). These and other requirements/challenges dictate modifications to RHIC accelerators. This report gives an overview of the modifications to the RHIC straight sections together with their individual challenges.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT034  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT044 Electron-Ion Collider Design Status 1954
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J.P. Jamilkowski, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, D. Xu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, USA
  • A. Blednykh, D.M. Gassner, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported under Contract No. DE-SC0012704, Contract No. DE-AC05-06OR23177, Contract No. DE-AC05-00OR22725, and Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) is being designed for construction at Brookhaven National Laboratory. Activities have been focused on beam-beam simulations, polarization studies, and beam dynamics, as well as on maturing the layout and lattice design of the constituent accelerators and the interaction region. The latest design advances will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT044  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK014 Hadron Storage Ring 4 O’clock Injection Design and Optics for the Electron-Ion Collider 2068
 
  • H. Lovelace III, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, C. Liu, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, D. Weiss
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, USA
 
  The Hadron Storage Ring (HSR) of the Electron-Ion Collider (EIC) will accelerate protons and heavy ions up to a proton energy of 275 GeV and an Au+79 110 GeV/u to collide with electrons of energies up to 18 GeV. To accomplish the acceleration process, the hadrons are pre-accelerated in the Alternating Gradient Synchrotron (AGS), extracted, and transferred to HSR for injection. The planned area for injection is the current Relativistic Heavy Ion Collider (RHIC) 4 o’clock straight section. To inject hadrons, a series of modifications must be made to the existing RHIC 4 o’clock straight section to accommodate for the 20 new ~18 ns injection kickers and a new injection septum, while providing sufficient space and proper beam conditions for polarimetry equipment. These modifications will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK014  
About • Received ※ 02 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK015 The Electron-Ion Collider Hadron Storage Ring 10 O’clock Switchyard Design 2071
 
  • H. Lovelace III, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, C. Liu, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, D. Weiss
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • T. Satogata, W. Wittmer
    JLab, Newport News, USA
 
  The Electron-Ion Collider (EIC) Hadron Storage Ring (HSR) will be composed of the current Relativistic Heavy Ion Collider (RHIC) yellow ring sextants with the exception of the 1 o’clock and the 11 o’clock arc. These two arcs use the existing blue ring inner (1 o’clock) and outer (11 o’clock) magnetic lattice for 275 GeV proton operation. The inner yellow 11 o’clock arc is used for 41 GeV energy operation. A switching magnet must be used to guide the hadron beam from the low and high energy arc respectively into the shared arc. This report provides the necessary lattice configuration, magnetic fields, and optics for the 10 o’clock utility straight section (USS) switchyard for both high and low energy configuration while providing the necessary space allocations and beam specifications for accelerator systems such as an additional radiofrequency cavity and beam dump.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK015  
About • Received ※ 01 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK035 Layout of the 12 O’clock Collimation Straight Section for the EIC Hadron Storage Ring 2142
 
  • G. Robert-Demolaize, J.S. Berg, K.A. Drees, D. Holmes, H. Lovelace III, S. Peggs, M. Valette
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-SC0012704.
The design of the Electron-Ion Collider (EIC) Hadron Storage Ring (HSR) calls for using parts of both of the Relativistic Heavy Ion Collider (RHIC) Blue and Yellow beamlines. With the HSR having to circulate low (41 GeV) and high (100+ GeV) energy hadron beams while matching the time of flight in the Electron Storage Ring (ESR), it becomes necessary for the ring lattice to switch from an outer arc to an inner arc in order to accommodate for the change in circumference. To do so, a switchyard is planned for installation in the HSR straight section at 12 o’clock with the other switchyard being placed in the straight section immediately downstream, 10 o’clock. The 12 o’clock straight section is simultaneously dedicated to the EIC 2-stage collimation system. The following reviews the layout constraints in the12 o’clock straight section that come with installing such a switchyard, along with the implications on the linear optics for that straight section at all HSR rigidities. The space allocation, twiss parameters and the mechanical requirements of the HSR betatron collimators that will be installed in this section are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK035  
About • Received ※ 07 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 27 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST048 RHIC Machine Protection System Upgrades 2548
 
  • M. Valette, D. Bruno, K.A. Drees, P.S. Dyer, R.L. Hulsart, J.S. Laster, J. Morris, G. Robert-Demolaize, J. Sandberg, C. Schultheiss, T.C. Shrey, G.M. Tustin
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
’In order to protect the future sPHENIX detector from spontaneous and asynchronous firing of one of the five RHIC abort kickers, mechanical relays were added to the triggering channel for each of them. The mechanical relays add several milliseconds to the delay between the detection of a failure or beam loss and the beam being safely disposed of. In order to account for this delay new inputs were included into the RHIC Machine Protection System to ensure detection of abnormal conditions as early as possible. These inputs include system diagnostics and beam measurements such as Beam Position Monitor signals. In this paper we detail the upgrades that will allow reliable operations with high intensity and high energy ion beams and the new detector as well as related operational challenges and how they were addressed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST048  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)