Author: Dowd, R.T.
Paper Title Page
MOPOMS039 Study of Material Choice in Beam Dumps for Energetic Electron Beams 721
 
  • D. Zhu, R.T. Dowd, Y.E. Tan
    AS - ANSTO, Clayton, Australia
 
  Lead is typically used as the initial target in a design for beam dumps for high energy electron beams (>20 MeV). Electron beams with energies above 20 MeV are usually built within concrete bunkers and therefore the design of any beam dump would just be a lead block (very cost effective) as close to the electron source as possible, after a vacuum flange of some sort. In a study of a hypothetical 100 MeV electron beam inside a concrete bunker with an extremely low dose rate constraint outside the bunker, the thickness of lead required would have been too restrictive for a compact design. In this study we investigate the potential benefits of designs that incorpo-rate low Z materials like graphite as the primary target material in vacuum followed by progressively higher Z materials up to lead. The results show the more diffuse elastic scattering from the primary target reduces the back scattered photons and reduces the overall neutron genera-tion. The effect was a more compact design for the beam dump to meet the same dose rate constraint.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS039  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS040 Radiation Shielding Design for the X-Band Laboratory for Radio-Frequency Test Facility - X-Lab - at the University of Melbourne 724
 
  • M. Volpi, R.P. Rassool, S.L. Sheehy, G. Taylor, S.D. Williams
    The University of Melbourne, Melbourne, Victoria, Australia
  • D. Banon-Caballero
    IFIC, Valencia, Spain
  • M. Boronat, N. Catalán Lasheras
    CERN, Meyrin, Switzerland
  • R.T. Dowd
    AS - ANSTO, Clayton, Australia
  • S.L. Sheehy
    ANSTO, Kirrawee DC New South Wales, Australia
 
  Here we report radiation dose estimates calculated for the X-band Laboratory for Accelerators and Beams (X-LAB) under construction at the University of Melbourne (UoM). The lab will host a CERN X-band test stand containing two 12 GHz 6 MW klystron amplifiers. By power combination through hybrid couplers and the use of pulse compressors, up to 50 MW of peak power can be sent to any of to either of the two test slots at pulse repetition rates up to 400 Hz. The test stand is dedicated to RF conditioning and testing CLIC’s high gradient accelerating structures beyond 100 MV/m. This paper also gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at X-LAB, radiation fields at high-energy accelerators, and the radiation monitoring system used at X-LAB. The bunker design to achieve a dose rate less than annual dose limit of 1 mSv is also shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS040  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS001 Conceptual Design of a Future Australian Light Source 1381
 
  • R.T. Dowd, M.P. Atkinson, R. Auchettl, W.J. Chi, Y.E. Tan, D. Zhu, K. Zingre
    AS - ANSTO, Clayton, Australia
 
  ANSTO currently operates the Australian Synchrotron, a 3 GeV, 3rd generation light source that begun user operations in 2007. The Australian synchrotron is now halfway through its expected life span and we have begun planning the next light source facility that will eventually replace it. This paper describes the conceptual design of an entirely new light source facility for Australia, which makes use of the latest advances in compact acceleration technology and 4th generation lattices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS001  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST006 Simulations of the Suitability of a DC Electron Photogun and S-Band Accelerating Structure as Input to an X-Band Linac 2445
SUSPMF015   use link to see paper's listing under its alternate paper code  
 
  • S.D. Williams, R.P. Rassool, S.L. Sheehy, G. Taylor, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • R. Auchettl, R.T. Dowd
    AS - ANSTO, Clayton, Australia
 
  Work has been underway for some time to design a compact electron beamline utilising X-band linear accelerating structures in the new Melbourne X-band Laboratory for Accelerators and Beams (X-LAB). The original design utilised an S-band RF photogun as an input to a pair of high gradient X-band linear accelerating structures, but we have been motivated to investigate an alternative starting section to allow for initial testing. This will utilise a DC photogun and S-band accelerating structure similar to those used at the Australian Synchrotron. Simulation results incorporating space charge of a beamline composed of a DC photogun, S-band accelerating structures, and two high gradient X-band structures will be presented. These simulation results will be optimised for minimum emittance at the end of the beamline.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST006  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)