Paper | Title | Page |
---|---|---|
MOPOST029 | Fast Cycling FFA Permanent Magnet Synchrotron | 126 |
|
||
Funding: Work performed under the Contract Number DE-AC02-98CH10886 with the auspices of US Department of Energy We present a novel concept of the Fixed-Field-Alternating (FFA) small racetrack proton accelerator 10x6 size, with kinetic energy range between 30-250 MeV made of permanent magnets. The horizontal and vertical tunes are fixed within the energy range, as the magnets The combined function magnets have additional sextupole and octupole multipoles the chromatic corrections, providing very fast cycling with a frequency of 1.3 KHz. The injector is 30 MeV commercially available cyclotron with RF frequency of 65 MHz. The permanent magnet synchrotron RF frequency is 390 MHz and acceleration uses the phase jump scheme. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST029 | |
About • | Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 04 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOTK053 | RLAs with FFA Arcs for Protons and Electrons | 584 |
|
||
Funding: Authored in part by UT-Battelle, LLC, Jefferson Science Associates, LLC, and Brookhaven Science Associates, LLC under Contracts DE-AC05-00OR22725, DE-AC05-06OR23177, and DE-SC0012704 with the US DOE. Recirculating Linear Accelerators (RLAs) provide an efficient way of producing high-power, high-quality, continuous-wave hadron and lepton beams. However, their attractiveness had been limited by the cumbersomeness of multiple recirculating arcs and by the complexity of the spreader and recombiner regions. The latter problem sets one of the practical limitations on the maximum number of recirculations. We present an RLA design concept where the problem of multiple arcs is solved using the Fixed-Field Alternating gradient (FFA) design as in CBETA. The spreader/recombiner design is greatly simplified using an adiabatic matching approach. It allows for the spreader/recombiner function to be accomplished by a single beam line. The concept is applied to the designs of a high-power hadron accelerator being considered at ORNL and a CEBAF electron energy doubling project, FFA@CEBAF, being developed at Jefferson lab. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK053 | |
About • | Received ※ 10 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEIXGD1 | EIC Beam Dynamics Challenges | 1576 |
|
||
The Electron Ion Collider aims to produce luminosities of 1034 cm-2s-1 . The machine will operate over a broad range of collision energies with highly polarized beams. The coexistence of highly radiative electrons and nonradiative ions produce a host of unique effects. Strong hadron cooling will be employed for the final factor of 3 luminosity boost. | ||
![]() |
Slides WEIXGD1 [3.952 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIXGD1 | |
About • | Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 14 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEOXGD2 | Electron Accelerator Lattice Design for LHeC with Permanent Magnets | 1587 |
|
||
Funding: Work performed under the Contract Number DE-AC02-98CH10886 with the auspices of US Department of Energy We present a new ’green energy’ approach to the Energy Recovery Linac (ERL) the future Electron Ion Collider at LHeC using single beam line made of very strong focusing combined function permanent magnets and the Fixed Field Alternating Linear Gradient (FFA-LG) principle. We are basing our design on recent very successful commissioning results of the Cornell University and Brookhaven National Laboratory ERL Test Accelerator-CBETA. |
||
![]() |
Slides WEOXGD2 [19.845 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOXGD2 | |
About • | Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 02 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEOYGD2 |
Results of the Coherent Electron Cooling Experiment at RHIC | |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. Coherent electron Cooling (CeC) experiment aims on demonstrating cooling during this RHIC run, which will be concluded in April 2022. In this talk we will present results of the CeC experiment with special focus won the use and the control of the broad-band micro-bunching Plasma Cascade Amplifier with bandwidth of 15 THz. We will also discuss connection of this experiment with the developing the CeC cooler for future Electron Ion Collider. |
||
![]() |
Slides WEOYGD2 [18.592 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT044 | Electron-Ion Collider Design Status | 1954 |
|
||
Funding: Work supported under Contract No. DE-SC0012704, Contract No. DE-AC05-06OR23177, Contract No. DE-AC05-00OR22725, and Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy. The Electron-Ion Collider (EIC) is being designed for construction at Brookhaven National Laboratory. Activities have been focused on beam-beam simulations, polarization studies, and beam dynamics, as well as on maturing the layout and lattice design of the constituent accelerators and the interaction region. The latest design advances will be presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT044 | |
About • | Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOST023 | Current Status of the FFA@CEBAF Energy Upgrade Study | 2494 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. This work will describe the current status of the FFA@CEBAF energy upgrade feasibility studies. Technical updates are given, but more specific details are left to separate contributions. Specifically, this work will discuss improvements to the FFA arcs, a new recirculating injector proposal, and numerous modifications to the current 12 GeV CEBAF which will be required, such as the spreaders and recombiners architecture, splitters (time-of-flight chicanes), the extraction system, and the hall lines. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST023 | |
About • | Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOTK011 | Permanent Magnets for the CEBAF 24GeV Upgrade | 2792 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. An upgrade of the CEBAF facility to double its present energy of 12GeV has been proposed. To provide double the number of linac passes using the existing five stacked arc beamlines, some beamlines are replaced by fixed-field accelerator (FFA) arcs, allowing multiple energies to pass through the same magnets. A solution is presented in which two of the existing electromagnetic beamlines are replaced with permanent magnet non-scaling FFA arcs, as demonstrated at CBETA. The two-stage design reduces peak magnetic field and synchrotron radiation loss compared to using a single stage. FFAs do not pulse their magnets, making permanent magnets a promising and power-efficient technology option. However, the magnetic field requirements are still at the high end of accelerator permanent magnets produced thus far (1.6T peak on beam), while the magnets must also be combined-function, having a gradient with a dipole offset. Designs using a novel oval aperture and open midplane within an adapted Halbach magnet are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK011 | |
About • | Received ※ 31 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |