Author: Brinkmann, R.
Paper Title Page
MOPOPT021 5D Tomography of Electron Bunches at ARES 279
SUSPMF088   use link to see paper's listing under its alternate paper code  
 
  • S. Jaster-Merz, R.W. Aßmann, R. Brinkmann, F. Burkart, T. Vinatier
    DESY, Hamburg, Germany
  • R.W. Aßmann
    LNF-INFN, Frascati, Italy
  • S. Jaster-Merz
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  The ARES linear accelerator at DESY aims to deliver stable and well-characterized electron bunches with durations down to the sub-fs level. Such bunches are highly sought after to study the injection into novel high-gradient accelerating structures, test diagnostics devices, or perform autonomous accelerator studies. For such applications, it is advantageous to have a complete and detailed knowledge of the beam properties. Tomographic methods have shown to be a key tool to reconstruct the phase space of beams. Based on these techniques, a novel diagnostics method is being developed to resolve the full 5-dimensional phase space (x,x’,y,y’,z) of bunches including their transverse and longitudinal distributions and correlations. In simulation studies, this method shows an excellent agreement between the reconstructed and the original distribution for all five planes. Here, the 5-dimensional phase space tomography method is presented using a showcase simulation study at ARES.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT021  
About • Received ※ 03 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS014 PETRA IV Storage Ring Design 1431
 
  • I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, Y.-C. Chae, D. Einfeld, T. Hellert, M. Hüning, M.A. Jebramcik, J. Keil, C. Li, R. Wanzenberg
    DESY, Hamburg, Germany
 
  PETRA IV will be a diffraction-limited 6 GeV synchrotron light source with an emittance of 20 pm rad at DESY Hamburg. The TDR phase is nearing completion, and the lattice design is being finalised. The lattice will be based on the six-bend achromat cell with extensive use of damping wigglers. The key challenges of the lattice design are finding the balance between emittance minimisation and non-linear beam dynamics performance, and adapting the lattice to a collider-type tunnel geometry of the PETRA facility, with the long straight sections and low degree of superperiodicity. We present the lattice design and the beam physics aspects, focusing on the beam dynamics performance and optimisation, and the projected beam parameters taking collective effects and lattice imperfections into account.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS014  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS018 Error Analysis and Commissioning Simulation for the PETRA-IV Storage Ring 1442
 
  • T. Hellert, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, Y.-C. Chae, D. Einfeld, M.A. Jebramcik, J. Keil
    DESY, Hamburg, Germany
 
  The upgrade of the PETRA-III storage ring into a diffraction limited synchrotron radiation source is nearing the end of its detailed technical design phase. We present a preliminary commissioning simulation for PETRA-IV demonstrating that the final corrected machines meet the performance design goals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS018  
About • Received ※ 10 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS019 Collimation Strategy for the Low-Emittance PETRA IV Storage Ring 1445
 
  • M.A. Jebramcik, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, D. Einfeld, T. Hellert, J. Keil
    DESY, Hamburg, Germany
 
  The beam-intensity losses in the proposed PETRA IV electron storage ring that will replace DESY’s synchrotron light source PETRA III will be dominated by the Touschek effect due to the high bunch density. The beam lifetime will only be in the range of 5 h in the timing mode (80 high-intensity bunches) leading to a maximum power loss of ~170 mW along the storage ring (excluding injection losses). To avoid the demagnetization of the permanent-magnet undulators and combined-function magnets, this radiation-sensitive hardware has to be shielded against losses as well as possible. Such shielding elongates the lifetime of the hardware and consequently reduces the time and the resources that are spent on maintenance once PETRA IV is operational. This contribution presents options for collimator locations, e.g., at the dispersion bump in the achromat cell, to reduce the exposure to losses from the Touschek effect and the injection process. This contribution also quantifies the risk of damaging the installed collimation system in case of hardware failure, e.g., RF cavity or quadrupole failure, since the beam with an emittance of 20 pm could damage collimators if there is no emittance blow-up.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS019  
About • Received ※ 08 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 28 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST029 First Start-to-End Simulations of the 6 GeV Laser-Plasma Injector at DESY 1757
 
  • S.A. Antipov, I.V. Agapov, R. Brinkmann, Á. Ferran Pousa, M.A. Jebramcik, A. Martinez de la Ossa, M. Thévenet
    DESY, Hamburg, Germany
 
  DESY is studying the feasibility of a 6 GeV laser-plasma injector for top-up operation of its future flagship synchrotron light source PETRA IV. A potential design of such an injector involves a single plasma stage, a beamline for beam capture and phase space manipulation, and a X-band rf energy compressor. Numerical tracking with realistic beam distributions shows that an energy variation below 0.1%, rms and a transverse emittance about 1 nm-rad, rms can be achieved under realistic timing, energy, and pointing jitters. PETRA IV injection efficiency studies performed with a conservative 5% beta-beating indicate negligible beam losses for the simulated beams during top-up. Provided the necessary progress on high-power lasers and plasma cells, the laser plasma injector could become a competitive alternative to the conventional injector chain.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST029  
About • Received ※ 02 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT043 Injection Design Options for the Low-Emittance PETRA IV Storage Ring 2689
 
  • M.A. Jebramcik, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, D. Einfeld, T. Hellert, J. Keil, G. Loisch, F. Obier
    DESY, Hamburg, Germany
 
  The proposed PETRA IV electron storage ring that will replace DESY’s flagship synchrotron light source PETRA III will feature a horizontal emittance as low as 20 pm based on a hybrid six-bend achromat lattice. Such a lattice design leads to the difficulty of injecting the incoming beam into an acceptance that is as small as 2.6 um. In contrast to earlier lattice iterations based on a seven-bend achromat lattice, the latest version allows accumulation, i.e., the off-axis injection of the incoming beam. In this contribution, the effects of deploying different septum types, namely a pulsed or a Lambertson septum, on the injection process as well as the injection efficiency are presented. This analysis includes the effects of common manipulations to the injected beam, e.g., beam rotation and aperture sharing, on the injection efficiency. Furthermore, the option of a nonlinear kicker and its optimization (wire positions, wire current, optics functions) are presented since a nonlinear kicker could provide an alternative to the rather large number of strip-line kickers that are necessary to generate the orbit bump at the septum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT043  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)