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Abstract

The ARES linear accelerator at DESY aims to deliver

stable and well-characterized electron bunches with dura-

tions down to the sub-fs level. Such bunches are highly

sought after to study the injection into novel high-gradient

accelerating structures, test diagnostics devices, or perform

autonomous accelerator studies. For such applications, it is

advantageous to have a complete and detailed knowledge

of the beam properties. Tomographic methods have shown

to be a key tool to reconstruct the phase space of beams.

Based on these techniques, a novel diagnostics method is be-

ing developed to resolve the full 5-dimensional phase space

(x, x ′, y, y′, z) of bunches including their transverse and lon-

gitudinal distributions and correlations. In simulation stud-

ies, this method shows an excellent agreement between the

reconstructed and the original distribution for all Ąve planes.

Here, the 5-dimensional phase space tomography method is

presented using a showcase simulation study at ARES.

INTRODUCTION

Advanced accelerator research and development beneĄts

greatly from stable and well-characterized electron bunches.

Undesired correlations between the two transverse planes

can arise due to unnoticed rotated beamline elements or stray

Ąelds on the photocathode and in the gun region and can

lead to 2D emittance growth [1, 2]. Longitudinal-transverse

correlations are introduced due to space-charge forces [3] in

the low energy region, a transverse dependent energy gain

which evolves into a longitudinal-transverse correlation over

a drift, or coherent-synchrotron radiation in, for example,

bunch compressors in the beamline which can introduce

longitudinally dependent transverse ofsets [4]. In simula-

tions, the full 6-dimensional phase space is available at any

location in the beamline and such efects can be monitored

and minimized. However, in reality, such diagnostics of the

bunch is not as straightforward and requires advanced meth-

ods. A measurement of the 6-dimensional charge density

has been performed for a H− beam in a dedicated beamline

using slit masks [5]. In operating accelerators, tomographic

methods are a useful tool to obtain detailed knowledge of

the beam distribution [6Ű10]. Methods to measure multi-

dimensional distributions such as the full transverse phase

space [11Ű14] as well as the 3-dimensional charge-density

distribution [15Ű18] exist. Here, a tomographic method to

reconstruct the 5-dimensional charge-density distribution

(x, x ′, y, y′, z) of an electron bunch is introduced. It com-

bines a quadrupole-based tomography of the 4-dimensional
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transverse phase space with the variable streaking direction

of a PolariX X-band transverse deĆecting structure (TDS) Ű

a device developed in collaboration between CERN, DESY,

and PSI [18Ű20]. The method allows to reconstruct cor-

relations between the horizontal and vertical positions x,y

and divergences x ′,y′ as well as the longitudinal position

z in the bunch. Such information is useful to identify un-

desired correlations and therefore enables the optimization

and improvement of the accelerator performance and beam

quality.

The method is tested on an example case based on the

ARES linear accelerator at DESY. ARES [21Ű23] is a nor-

mal conducting S-band linear electron accelerator designed

for accelerator research and development. It operates at

up to 50 Hz, 155 MeV and charges from 0.05 pC to 200 pC.

ARES is designed to produce and measure bunches with sub-

fs durations [16, 17, 24Ű26]. Additionally, it focusses on

the study of novel dielectric-based acceleration techniques

[27Ű30] and electron radiotherapy, the development of di-

agnostics devices and methods [31Ű34] and the application

of machine learning to accelerator operation [35, 36]. Fur-

thermore, it serves as a general test bed for new accelerator

components [37]. For the simulations, a Gaussian particle

distribution with ARES-compatible beam parameters for a

fully on-crest working point is chosen. To demonstrate the

potential of the method, an artiĄcial longitudinal sinusoidal

oscillation of the transverse beam size and divergence in

the x-plane is imprinted on the bunch. The Courant-Snyder

parameters [38], the alpha αx,y and beta βx,y functions, are

kept constant. Together with the geometric emittance ϵx,y
these functions describe the statistical beam parameters.

The present study aims to demonstrate the working princi-

ple of the method by utilizing the ARES beamline. Further-

more, a simulated reconstruction of a particle distribution is

presented and compared to the input distribution.

WORKING PRINCIPLE

The 5-dimensional phase space (x, x ′, y, y′, z) of electron

bunches is reconstructed using a tomographic method. In

general, a tomography uses low-dimensional projections

of an object along diferent angles to reconstruct a higher-

dimensional distribution. This can be applied to bunches

in an accelerator. The transverse information is obtained

by scanning the transverse phase advances µx,y with, e.g.,

quadrupoles. The longitudinal information is obtained by

streaking the beam with a TDS. To also resolve the correla-

tions between the two transverse planes, their phase advances

are controlled simultaneously. Furthermore, the streaking
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of the bunch at various angles is required. This is due to the

overlap of the longitudinal information with the transverse

plane parallel to the streaking direction. The streaking at

arbitrary angles can be performed with a PolariX TDS. The

Ąnal transverse distribution is reconstructed upstream of the

Ąrst quadrupole used for the tomography, the longitudinal

information is obtained at the location of the TDS.

The principle of the 5-dimensional phase-space tomogra-

phy is as follows:

• For a Ąxed transverse phase advance combination

(µx, µy), the beam is streaked with the TDS, and its

projection is recorded on a downstream screen. This is

repeated for diferent streaking angles.

• These screen images are used to reconstruct the 3-

dimensional charge-density distribution (x, y, z) of the

bunch [15]. The transverse proĄles are reconstructed at

the location of the screen. The longitudinal information

is reconstructed at the TDS center.

• The reconstruction procedure is repeated for all desired

phase advance combinations. The Ąnal longitudinal

resolution is given by the largest unstreaked spot size

at the screen in all transverse streaking planes for all

phase advance combinations.

• Each 3-dimensional reconstruction can be regarded as

the projection of the (x, x ′, y, y′, z) phase space onto

(x, y, z) for diferent transverse rotation angles.

• These rotation angles are given by the phase advance

when analyzing the images in normalized phase space

[39]. The conversion from real phase space x, y to

normalized phase space xN , yN is given by xN , yN =

x, y/
√

βx,y .

• Next, the 3-dimensional reconstructions are combined.

This is done for each longitudinal slice zk individually.

• Using the reconstructed sliced projections (x, y)zk ,

the transverse charge-density distribution (x, x ′, y, y′)zk
can be reconstructed similar to the reconstruction of

the 4-dimensional transverse charge density in [11, 12].

This distribution is reconstructed at a chosen location

upstream of the TDS and all quadrupoles that are used

to scan the phase advance.

• By combining all longitudinal slices, the 5-dimensional

charge-density distribution is obtained.

SIMULATION OF 5D TOMOGRAPHY

The section of the ARES linear accelerator used for the

tomographic studies contains Ąve quadrupoles and two Po-

lariX transverse deĆecting structures (see Fig. 1). Screen

images are recorded at the screen station downstream of the

TDS. The Ąnal distribution is reconstructed at the screen

upstream of the Ąrst displayed quadrupole. The quadrupoles

are used to match the phase advance. Although two PolariX

structures are available in the beamline, in these simulations

only one structure is used to streak the bunch. The structure

is operated at 11.99 GHz. The phase advance is scanned over

a range of 180° in 30 steps. The beam is streaked over 180°

in 50 steps. For the screen, a size of 2 cm and 1000 pixels

Table 1: Input and Reconstructed Beam Parameters

Parameter Unit Input Reconstruction

E MeV 155 -

σE % 0.1 -

Q pC 1 -

στ fs 200.0 198.9

ϵx m rad 6.12 × 10−9 5.85 × 10−9

ϵy m rad 4.66 × 10−9 4.85 × 10−9

ϵ slicex m rad 5.46 × 10−9 4.21 × 10−9

ϵ slicey m rad 4.67 × 10−9 4.79 × 10−9

αx / αy 0.81 / 0.94 0.80 / 0.94

βx / βy m 0.86 / 3.77 0.86 / 3.76

per transverse plane is chosen. This corresponds to a pixel

size of 20 µm × 20 µm which is larger than the available

resolution at the screen stations at ARES and chosen to re-

duce computational costs. The longitudinal resolution R

is calculated following the deĄnition in [40]. It is deĄned

as R = σ |p| c/(2π f eV L), where σ is the maximum un-

streaked transverse spot size at the screen downstream of the

TDS, p is the average momentum of the bunch, c the speed

of light, e the elementary charge, f the TDS frequency, V the

streaking amplitude and L the drift length between the TDS

center and the downstream screen. The beta functions at this

screen are matched to obtain an RMS spot size below 0.3 mm

in all rotation planes. Together with a 4.79 MV streaking

amplitude in the PolariX TDS this results in a longitudinal

resolution of 17.81 fs. To reduce computational costs, only

40 slices of 29.8 fs are reconstructed. The amplitude of the

TDS at ARES can be increased up to 20 MV. This results in

a resolution of 4.3 fs using one TDS. However, to be able to

Ąt a roughly ±3 sigma RMS bunch duration on the screen,

the lower amplitude is chosen in the study here. Simulations

are performed in ocelot [41, 42] using second order trans-

fer maps for all elements except the transverse deĆecting

structure. A particle distribution with 4 000 000 particles is

tracked and the beam properties are shown in Table 1, where

E is the energy, σE the energy spread, Q the charge and σt
the bunch duration.

All tomographic reconstructions are performed using a

python scikit-image [43] implementation of the Simultane-

ous Algebraic Reconstruction Technique (SART) algorithm

[44] with two iterations. The minimum of the reconstructed

values is restricted to zero, the maximum to 6000. The recon-

structed sliced transverse distributions (x, y) are converted

to normalized phase space in a range from −0.5 mm/
√

m

to 0.5 mm/
√

m with 200 bins by using the beta functions

obtained from the propagation of the Courant-Snyder param-

eters through the beamline. The full reconstruction takes

less than 2.5 h running in parallel on an AMD EPYC 75F3

on a computing cluster.

A comparison of input and reconstructed beam param-

eters shows excellent agreement between the input and re-

constructed Courant-Snyder parameters and RMS bunch
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Figure 1: Sketch of the section of the ARES beamline used for the 5D tomography simulations.
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Figure 2: Sliced comparison of the reconstructed (solid line)

and input (dotted line) transverse sizes and divergences. A

sinusoidal variation is imprinted on the x-plane (blue) to

exhibit the ability of the method. The relative discrepancies

ζ =
(σrecon−σinput )

σinput
are shown. The longitudinal charge-

density proĄle of the input (dashed gray) and reconstruction

(solid blue) is shown as a reference.

duration (see Table 1). The transverse emittances are recon-

structed well with a relative discrepancy of less than 5 % in

both planes. The reconstructed emittances are calculated

from the standard deviation of the transverse projections of

the reconstructed distribution in normalized phase space.

The slice emittance is calculated for slice number 19 which

ranges from −4.46 µm to 4.46 µm where 0 µm is at the lon-

gitudinal center of the bunch. To avoid the inĆuence of

artifacts stemming from the tomographic reconstruction, in

the transverse planes values outside of a ±3 sigma range

from the bunch center are not considered for the emittance

and Courant-Snyder parameter analysis.

The reconstructed sliced transverse beam sizes and diver-

gences agree well with the input distribution (see Fig. 2).

The imprinted sinusoidal correlation in the x-plane is re-

constructed accurately. A slight imprint of the sinusoidal

correlation on the y-plane is observed. Since no coupling

between the transverse planes is present in the beamline, this

possibly stems from the tomographic reconstruction and is

subject to further investigations. The relative discrepancies

between input and reconstructed distribution of all slices are

better than 13 %. For this analysis, the standard deviation of

the sliced input distribution is calculated and compared to the

RMS value obtained by a Gaussian Ąt to the reconstructed

projection. The input and reconstructed longitudinal charge

density agree well and are shown for each longitudinal slice.

CONCLUSION

The presented simulation study based on the ARES beam-

line with an idealized Gaussian distribution shows that the

proposed method accurately reconstructs the 5-dimensional

phase-space distribution of the bunch. The results show

excellent agreement between the input and reconstructed

projected and sliced beam parameters with a relative dis-

crepancy of . 10 %. Further studies with full start-to-end

simulations of an electron bunch at ARES are foreseen.
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