Author: Bartolini, R.
Paper Title Page
MOIYSP2 Touschek and Intrabeam Scattering in Ultralow Emittance Storage Rings 25
 
  • R. Bartolini
    DESY, Hamburg, Germany
 
  In next-generation synchrotron radiation sources targeting extremely low emittance around the so-called diffraction limit, the Touschek and intrabeam scattering (IBS) effects are important factors determining the performance of the facility. As the emittance decreases, the bunch volume decreases and the Touschek beam lifetime also decreases. However, this downward trend in beam lifetime is expected to turn to increase in the emittance region below a certain threshold. Since this threshold is determined by the emittance at equilibrium including the IBS effect, a self-consistent treatment is necessary for a correct and unified understanding of the beam characteristics. In currently operating facilities, such as MAX-IV, or in next-generation light sources under construction or in the planning stages, it is expected that such effects may be observed depending on the operating conditions. This talk will be reviewing Touschek and IBS Effects in terms of how these effects limit the ring performance.  
slides icon Slides MOIYSP2 [5.466 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOIYSP2  
About • Received ※ 12 June 2022 — Revised ※ 21 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS014 PETRA IV Storage Ring Design 1431
 
  • I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, Y.-C. Chae, D. Einfeld, T. Hellert, M. Hüning, M.A. Jebramcik, J. Keil, C. Li, R. Wanzenberg
    DESY, Hamburg, Germany
 
  PETRA IV will be a diffraction-limited 6 GeV synchrotron light source with an emittance of 20 pm rad at DESY Hamburg. The TDR phase is nearing completion, and the lattice design is being finalised. The lattice will be based on the six-bend achromat cell with extensive use of damping wigglers. The key challenges of the lattice design are finding the balance between emittance minimisation and non-linear beam dynamics performance, and adapting the lattice to a collider-type tunnel geometry of the PETRA facility, with the long straight sections and low degree of superperiodicity. We present the lattice design and the beam physics aspects, focusing on the beam dynamics performance and optimisation, and the projected beam parameters taking collective effects and lattice imperfections into account.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS014  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS015 Proposal of a Girder Realignment Test in PETRA III 1435
 
  • M. Schaumann, I.V. Agapov, R. Bartolini, M. Bieler, R. Böspflug, D. Einfeld, M.G. Hoffmann, J. Keil, L. Liao, G. Priebe, M. Schlösser, R. Wanzenberg
    DESY, Hamburg, Germany
 
  PETRA IV can benefit from the fine control of the girders that carry the storage ring elements to achieve the design beam performance. Based on the corrector magnet strength pattern it is desired to realign girders to stay within the alignment tolerances. In the current PETRA III configuration, the girders in the Max von Laue Hall are equipped for remote alignment, however, those have not been moved since their initial installation and the alignment system is currently not connected to the control system. In preparation for PETRA IV, a movement test of one of the PETRA III girders should confirm the ability to safely and precisely remote control the equipment based on an optics model that describes the effect of the girder movement on the orbit. This paper studies the feasibility of this test and prepares an initial mock-up experiment to be performed on a spare girder.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS015  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS018 Error Analysis and Commissioning Simulation for the PETRA-IV Storage Ring 1442
 
  • T. Hellert, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, Y.-C. Chae, D. Einfeld, M.A. Jebramcik, J. Keil
    DESY, Hamburg, Germany
 
  The upgrade of the PETRA-III storage ring into a diffraction limited synchrotron radiation source is nearing the end of its detailed technical design phase. We present a preliminary commissioning simulation for PETRA-IV demonstrating that the final corrected machines meet the performance design goals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS018  
About • Received ※ 10 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS019 Collimation Strategy for the Low-Emittance PETRA IV Storage Ring 1445
 
  • M.A. Jebramcik, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, D. Einfeld, T. Hellert, J. Keil
    DESY, Hamburg, Germany
 
  The beam-intensity losses in the proposed PETRA IV electron storage ring that will replace DESY’s synchrotron light source PETRA III will be dominated by the Touschek effect due to the high bunch density. The beam lifetime will only be in the range of 5 h in the timing mode (80 high-intensity bunches) leading to a maximum power loss of ~170 mW along the storage ring (excluding injection losses). To avoid the demagnetization of the permanent-magnet undulators and combined-function magnets, this radiation-sensitive hardware has to be shielded against losses as well as possible. Such shielding elongates the lifetime of the hardware and consequently reduces the time and the resources that are spent on maintenance once PETRA IV is operational. This contribution presents options for collimator locations, e.g., at the dispersion bump in the achromat cell, to reduce the exposure to losses from the Touschek effect and the injection process. This contribution also quantifies the risk of damaging the installed collimation system in case of hardware failure, e.g., RF cavity or quadrupole failure, since the beam with an emittance of 20 pm could damage collimators if there is no emittance blow-up.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS019  
About • Received ※ 08 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 28 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS029 Status of the PETRA IV Machine Project 1475
 
  • R. Bartolini, I.V. Agapov, A. Aloev, R. Bacher, R. Böspflug, H.-J. Eckoldt, J. Hauser, M. Hüning, P. Hülsmann, N. Koldrack, B. Krause, L. Lilje, G. Loisch, R. Onken, A. Petrov, S. Pfeiffer, J. Prenting, H. Schlarb, M. Thede, M. Tischer
    DESY, Hamburg, Germany
 
  DESY is planning the upgrade of PETRA III to a fourth generation light source, providing high brightness, quasi diffraction limited hard X-ray photons. The project is underpinned by the construction of a new storage ring PETRA IV, based on a 20 pm accelerator lattice using a hybrid 6-bend achromat concept. We review here the status of the machine project, the latest development in the different technical subsystems, the status of the engineering integration and the plans for the implementation of the new ring in the existing PETRA III tunnel.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS029  
About • Received ※ 14 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT043 Injection Design Options for the Low-Emittance PETRA IV Storage Ring 2689
 
  • M.A. Jebramcik, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, D. Einfeld, T. Hellert, J. Keil, G. Loisch, F. Obier
    DESY, Hamburg, Germany
 
  The proposed PETRA IV electron storage ring that will replace DESY’s flagship synchrotron light source PETRA III will feature a horizontal emittance as low as 20 pm based on a hybrid six-bend achromat lattice. Such a lattice design leads to the difficulty of injecting the incoming beam into an acceptance that is as small as 2.6 um. In contrast to earlier lattice iterations based on a seven-bend achromat lattice, the latest version allows accumulation, i.e., the off-axis injection of the incoming beam. In this contribution, the effects of deploying different septum types, namely a pulsed or a Lambertson septum, on the injection process as well as the injection efficiency are presented. This analysis includes the effects of common manipulations to the injected beam, e.g., beam rotation and aperture sharing, on the injection efficiency. Furthermore, the option of a nonlinear kicker and its optimization (wire positions, wire current, optics functions) are presented since a nonlinear kicker could provide an alternative to the rather large number of strip-line kickers that are necessary to generate the orbit bump at the septum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT043  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK002 Magnet Design for the PETRA IV Storage Ring 2767
 
  • R. Bartolini, I.V. Agapov, A. Aloev, H.-J. Eckoldt, D. Einfeld, B. Krause, A. Petrov, M. Thede, M. Tischer
    DESY, Hamburg, Germany
  • J. Chavanne
    ESRF, Grenoble, France
 
  The proposed PETRA IV electron storage ring that will replace DESY’s flagship synchrotron light source PETRA III will feature a horizontal emittance as low as 20 pmrad. It is based on a hybrid six-bend achromat lattice. In addition to the storage ring PETRA IV, the Booster Synchrotron and the corresponding transfer line will be renewed. Overall about 4000 magnets will be manufactured. The lattice design require high-gradient quadrupoles, which are unfeasible with conventional steel, used traditionally for normal-conducting magnets. The required gradient is safely reached with the poles, made of Permendur. The bending magnets for the storage ring will be based on permanent magnets. This contribution presents the electromagnetic design of the magnets for the storage ring and booster synchrotron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK002  
About • Received ※ 09 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)