Author: Auchettl, R.
Paper Title Page
TUPOMS001 Conceptual Design of a Future Australian Light Source 1381
 
  • R.T. Dowd, M.P. Atkinson, R. Auchettl, W.J. Chi, Y.E. Tan, D. Zhu, K. Zingre
    AS - ANSTO, Clayton, Australia
 
  ANSTO currently operates the Australian Synchrotron, a 3 GeV, 3rd generation light source that begun user operations in 2007. The Australian synchrotron is now halfway through its expected life span and we have begun planning the next light source facility that will eventually replace it. This paper describes the conceptual design of an entirely new light source facility for Australia, which makes use of the latest advances in compact acceleration technology and 4th generation lattices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS001  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST006 Simulations of the Suitability of a DC Electron Photogun and S-Band Accelerating Structure as Input to an X-Band Linac 2445
SUSPMF015   use link to see paper's listing under its alternate paper code  
 
  • S.D. Williams, R.P. Rassool, S.L. Sheehy, G. Taylor, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • R. Auchettl, R.T. Dowd
    AS - ANSTO, Clayton, Australia
 
  Work has been underway for some time to design a compact electron beamline utilising X-band linear accelerating structures in the new Melbourne X-band Laboratory for Accelerators and Beams (X-LAB). The original design utilised an S-band RF photogun as an input to a pair of high gradient X-band linear accelerating structures, but we have been motivated to investigate an alternative starting section to allow for initial testing. This will utilise a DC photogun and S-band accelerating structure similar to those used at the Australian Synchrotron. Simulation results incorporating space charge of a beamline composed of a DC photogun, S-band accelerating structures, and two high gradient X-band structures will be presented. These simulation results will be optimised for minimum emittance at the end of the beamline.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST006  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)