Author: Agustsson, R.B.
Paper Title Page
MOPOMS023 Start-to-End Beam-Dynamics Simulations of a Compact C-Band Electron Beam Source for High Spectral Brilliance Applications 687
 
  • L. Faillace, M. Behtouei, B. Spataro, C. Vaccarezza
    LNF-INFN, Frascati, Italy
  • R.B. Agustsson, I.I. Gadjev, S.V. Kutsaev, A.Y. Murokh
    RadiaBeam, Marina del Rey, California, USA
  • F. Bosco, M. Carillo, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • D.L. Bruhwiler
    RadiaSoft LLC, Boulder, Colorado, USA
  • O. Camacho, A. Fukasawa, N. Majernik, J.B. Rosenzweig, O. Williams
    UCLA, Los Angeles, California, USA
  • A. Giribono
    INFN/LNF, Frascati, Italy
  • S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work is partially supported by DARPA under the Contract No. HR001120C0072, by DOE Contract DE-SC0009914, DOE Contract DE-SC0020409, and by the National Science Foundation Grant No. PHY-1549132.
Proposals for new linear accelerator-based facilities are flourishing world-wide with the aim of high spectral brilliance radiation sources. Most of these accelerators are based on electron beams, with a variety of applications in industry, research and medicine such as colliders, free-electron lasers, wake-field accelerators, coherent THz and inverse Compton scattering X/’ sources as well as high-resolution diagnostics tools in biomedical science. In order to obtain high-quality electron beams in a small footprint, we present the optimization design of a C-band linear accelerator machine. Driven by a novel compact C-band hybrid photoinjector, it will yield ultra-short electron bunches of few 100’s pC directly from injection with ultra-low emittance, fraction of mm-mrad, and a few hundred fs length simultaneously, therefore satisfying full 6D emittance compensation. The normal-conducting linacs are based on a novel high-efficiency design with gradients up to 50 MV/m. The beam maximum energy can be easily adjusted in the mid-GeV’s range. In this paper, we discuss the start-to-end beam-dynamics simulations in details.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS023  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT032 Simulating Beam Transport with Permanent Magnet Chicane for THz Fel 1077
SUSPMF013   use link to see paper's listing under its alternate paper code  
 
  • A.C. Fisher, M.P. Lenz, P. Musumeci, A. Ody, Y. Park
    UCLA, Los Angeles, USA
  • R.B. Agustsson, T.J. Hodgetts, A.Y. Murokh
    RadiaBeam, Marina del Rey, California, USA
 
  Funding: This work was supported by NSF grant PHY-1734215 and DOE grant No. DE-SC0009914 and DE-SC0021190. The undulator construction has been carried out under SBIR/STTR DE-SC0017102 and DE-SC0018559.
Free electron lasers are an attractive option for high average and peak power radiation in the THz gap, a region of the electromagnetic spectrum where radiation sources are scarce, as the required beam and undulator parameters are readily achievable with current technology. However, slippage effects require the FEL to be driven with relatively long and low current electron bunches, limiting amplification gain and output power. Previous work demonstrated that a waveguide could be used to match the radiation and e-beam velocities in a meter-long strongly-tapered helical undulator, resulting in 10\% energy extraction from an ultrashort 200 pC, 5.5 MeV electron beam. We present simulations for a follow-up experiment targeting higher frequencies with improvements to the e-beam transport including a permanent magnet chicane for strong beam compression. FEL simulations show >20\% extraction efficiency from a 125 pC, 7.4 MeV electron beam at 0.32 THz.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT032  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT038 FAST-GREENS: A High Efficiency Free Electron Laser Driven by Superconducting RF Accelerator 1094
 
  • P. Musumeci, P.E. Denham, A.C. Fisher, Y. Park
    UCLA, Los Angeles, USA
  • R.B. Agustsson, T.J. Hodgetts, A.Y. Murokh, M. Ruelas
    RadiaBeam, Santa Monica, California, USA
  • L. Amoudry
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • D.R. Broemmelsiek, S. Nagaitsev, J. Ruan, J.K. Santucci, G. Stancari, A. Valishev
    Fermilab, Batavia, Illinois, USA
  • D.L. Bruhwiler, J.P. Edelen, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • A.H. Lumpkin, A. Zholents
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by DOE grants DE-SC0017102, DE-SC0018559 and DE-SC0009914
In this paper we’ll describe the FAST-GREENS experimental program where a 4 m-long strongly tapered helical undulator with a seeded prebuncher is used in the high gain TESSA regime to convert a significant fraction (up to 10 %) of energy from the 240 MeV electron beam from the FAST linac to coherent 515 nm radiation. We’ll also discuss the longer term plans for the setup where by embedding the undulator in an optical cavity matched with the high repetition rate from the superconducting accelerator (3,9 MHz), a very high average power laser source can be obtained. Eventually, the laser pulses can be redirected onto the relativistic electrons to generate by inverse compton scattering a very high flux of circularly polarized gamma rays for polarized positron production.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT038  
About • Received ※ 09 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT036 New Microwave Thermionic Electron Gun for APS Upgrade: Test Results and Operation Experience 2665
 
  • S.V. Kutsaev, R.B. Agustsson, A.C. Araujo Martinez, R.D. Berry, O. Chimalpopoca, A.Y. Murokh, M. Ruelas, A.Yu. Smirnov, S.U. Thielk
    RadiaBeam, Santa Monica, California, USA
  • J.E. Hoyt, W.G. Jansma, A. Nassiri, Y. Sun, G.J. Waldschmidt
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, under contracts DE-SC0015191 and DE- AC02-06CH11357
Recently, RadiaBeam has designed and built a robust thermionic RF gun with optimized electromagnetic per-formance, improved thermal engineering, and a robust cathode mounting technique. This gun allows to improve the performance of existing and future light sources, industrial accelerators, and electron beam driven te-rahertz sources. Unlike conventional electrically or side-coupled RF guns, this new gun operates in ’-mode with the help of magnetic coupling holes. Such a design al-lows operation at longer pulses and has negligible dipole and quadrupole components. The gun prototype was built, then installed and tested at the Advanced Photon Source (APS) injector. This paper presents the results of high power and beam tests of this RF gun, and operation-al experience at APS to this moment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT036  
About • Received ※ 31 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT037 Ceramics Evaluation for MW-Power Coaxial Windows, Operating in UHF Frequency Range 2668
 
  • S.V. Kutsaev, R.B. Agustsson, P.R. Carriere, N.G. Matavalam, A.Yu. Smirnov, S.U. Thielk
    RadiaBeam, Santa Monica, California, USA
  • A.A. Haase
    SLAC, Menlo Park, California, USA
  • T.W. Hall, D. Kim, J.T.M. Lyles, K.E. Nichols
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, under SBIR grant DE- SC0021552
Modern accelerator facilities require reliable high-power RF components. The RF vacuum window is a critical part of the waveguide couplers to the accelerating cavities. It is the point where the RF feed crosses the vacuum boundary and thus forms part of the confinement barrier. RF windows must be designed to have low power dissipation inside their ceramic, be resistant to mechanical stresses, and free of discharges. In this paper, we report on the evaluation of three different ceramic candidates for high power RF windows. These materials have low loss tangents, low secondary electron yield (SEY), and large thermal expansion coefficients. The acquired materials were inspected, coated, and measured to select the optimal set.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT037  
About • Received ※ 01 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK053 Foiled Again: Solid-State Sample Delivery for High Repetition Rate XFELs 2899
 
  • N. Majernik, N. Inzunza, P. Manwani, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • R.B. Agustsson, A. Moro
    RadiaBeam, Santa Monica, California, USA
  • R. Ash, N.B. Welke
    UW-Madison/PD, Madison, Wisconsin, USA
  • U. Bergmann, A. Halavanau, C. Pellegrini
    SLAC, Menlo Park, California, USA
 
  Funding: Department of Energy DE-SC0009914 and DE-AC02-76SF00515
XFELs today are capable of delivering high intensity pulse trains of x-rays with up-to MHz to sub-GHz frequency. These x-rays, when focused, can ablate a sample in a single shot, requiring the sample material to be replaced in time for the next shot. For some applications, especially serial crystallography, the sample may be renewed as a dilute solution in a high speed jet. Here, we describe the development and characterization of a system to deliver solid state sample material to an XFEL nanofocus. The first application of this system will be an x-ray laser oscillator operating at the copper Kα line with a ~30 ns cavity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK053  
About • Received ※ 06 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)