Keyword: operational-performance
Paper Title Other Keywords Page
TUPAB064 Specifications and Performance of a Chicane Magnet for the cERL IR-FEL FEL, undulator, dipole, operation 1512
 
  • N. Nakamura, K. Harada, N. Higashi, Y. Honda, R. Kato, C. Mitsuda, S. Nagahashi, T. Obina, H. Sakai, M. Shimada, H. Takaki, O.A. Tanaka
    KEK, Ibaraki, Japan
  • Y. Lu
    Sokendai, Ibaraki, Japan
 
  Funding: Work supported by NEDO project "Development of advanced laser processing with intelligence based high-brightness and high-efficiency laser technologies (TACMI project)".
The IR-FEL was constructed in the Compact ERL (cERL) at KEK from October 2019 to May 2020 for the purpose of developing high-power mid-infrared lasers for high-efficiency laser processing utilizing molecular vibrational absorption. The chicane magnet was newly installed between two IR-FEL undulators in the cERL in order to increase the FEL gain and pulse energy by converting the energy modulation to the density modulation in an electron bunch. It consists of three dipole magnets with laminated yokes made of 0.1-mm-thick permalloy sheets and the coil currents of the three magnets are independently controlled by three power supplies with the maximum current of 10 A. The maximum closed orbit bump made by the chicane magnetic field has the longitudinal dispersion(R56) of -6 mm. The coil-current ratio of the three dipole magnets was tuned after installation to make its orbit bumps closed and then the chicane magnet was used in the FEL operation. We present specifications and operational performance of the chicane magnet.
 
poster icon Poster TUPAB064 [4.053 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB064  
About • paper received ※ 18 May 2021       paper accepted ※ 25 May 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)