Keyword: GPU
Paper Title Other Keywords Page
WEPAB010 Full Range Tune Scan Studies Using Graphics Processing Units with CUDA in EIC Beam-Beam Simulations simulation, resonance, betatron, cavity 2598
 
  • D. Xu, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo, C. Montag
    BNL, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The hadron beam in the Elec­tron-Ion Col­lider (EIC) suf­fers high order be­ta­tron and syn­chro-be­ta­tron res­o­nances. In this paper, we pre­sent a weak-strong full range (0.0~0.5) frac­tional tune scan with a step size as small as 0.001. Mul­ti­ple Graph­ics Pro­cess­ing Units (GPUs) are used to speed up the sim­u­la­tion. A code par­al­lelized with MPI and CUDA is im­ple­mented. The good tune re­gion from weak-strong scan is fur­ther checked by the self-con­sis­tent strong-strong sim­u­la­tion. This study pro­vides beam dy­nam­ics guid­ance in choos­ing proper work­ing points for the fu­ture EIC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB010  
About • paper received ※ 17 May 2021       paper accepted ※ 23 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB190 Optimising and Extending a Single-Particle Tracking Library for High Parallel Performance lattice, simulation, interface, hardware 4146
 
  • M. Schwinzerl, H. Bartosik, R. De Maria, G. Iadarola, K. Paraschou
    CERN, Geneva, Switzerland
  • A. Oeftiger
    GSI, Darmstadt, Germany
  • M. Schwinzerl
    KFUG/IMSC, Graz, Austria
 
  Six­Track­Lib is a li­brary for per­form­ing beam-dy­nam­ics sim­u­la­tions on highly par­al­lel com­put­ing de­vices such as shared mem­ory multi-core proces­sors or graph­i­cal pro­cess­ing units (GPUs). Its sin­gle-par­ti­cle ap­proach fits very well with par­al­lel im­ple­men­ta­tions with rea­son­able base­line per­for­mance, mak­ing such a li­brary an in­ter­est­ing build­ing block for var­i­ous use cases, in­clud­ing sim­u­la­tions cov­er­ing col­lec­tive ef­fects. We de­scribe op­ti­miza­tions to im­prove their per­for­mance on Six­Track­Lib’s main tar­get plat­forms and the as­so­ci­ated per­for­mance gains. Fi­nally, we out­line the im­ple­mented tech­ni­cal in­ter­faces and ex­ten­sions that allow Six­Track­Lib to be used in a wider range of ap­pli­ca­tions and stud­ies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB190  
About • paper received ※ 18 May 2021       paper accepted ※ 14 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)