
OPTIMISING AND EXTENDING A SINGLE-PARTICLE TRACKING
LIBRARY FOR HIGH PARALLEL PERFORMANCE

M. Schwinzerl∗1, R. De Maria, K. Paraschou, H. Bartosik, G. Iadarola, CERN, Geneva, Switzerland
A. Oeftiger, GSI, Darmstadt, Germany

1also at Institute of Mathematics and Scientific Computing, University of Graz, Austria

Abstract
SixTrackLib is a library for performing tracking simu-

lations on highly parallel systems such as shared memory
multi-core processors or graphical processing units (GPUs).
Its single-particle approach fits very well to parallel imple-
mentations with reasonable base-line performance, making
such a library an interesting building block for various use
cases, including simulations covering collective effects. We
describe the optimisations applied to SixTrackLib to im-
prove its performance on its main target platforms and the
associated performance gain. Furthermore we outline the
technical interfaces and extensions implemented to allow its
use in a wider range of applications and studies.

INTRODUCTION
SixTrackLib [1] is a clean-room re-implementation of

the tracking component of the SixTrack [2, 3] simulation
program in the form of a stand-alone library. It is suitable
for stand-alone use in simulations or as a building-block
in feature-rich tools and libraries. SixTrackLib is a single-
particle tracking code, the idealised constituent particles of
a beam only interacting with their environment via electro-
magnetic fields but not directly with other particles. Par-
ticles 𝑝 are described in a 6𝐷 (i.e. 4𝐷 transversal and 2𝐷
longitudinal) phase space in relation to the trajectory of
a reference particle (cf. Fig. 1). The accelerator through

Reference-Particle
Trajectory

Particle
Trajectory

Figure 1: 6𝐷 representation of a particle 𝑝 in a circular
accelerator (local bending radius 𝜌(𝑠)). The coordinate
system ̂𝑥(𝑠)− ̂𝑦(𝑠)− ̂𝑧(𝑠) co-moves with the reference particle.

which 𝑝 travels is represented by a lattice, i.e. a sequence
of idealised and discrete beam elements. These elements
represent the electro-magnetic (EM) field configurations en-
countered within the accelerator as a function of the spatial
position. Thus solving the equations of motion for 𝑝 turns
into a problem of integrating each beam element’s influence
on 𝑝 along it’s path. In addition to conveying EM fields, Six-
TrackLib’s implementation of beam element objects mark
particles outside of admissible bounds as lost.
∗ martin.schwinzerl@cern.ch

IMPLEMENTATION
Tracking Algorithm, Parallelisation Strategy

Consider a lattice with 𝑁𝑒𝑙𝑒𝑚 beam elements i.e.,
𝐸𝑖 ≡ (E) [𝑖] and a particle 𝑝 with initial conditions 𝑝 (0).
Rather than performing the numerical integration explicitly,
SixTrackLib uses symplectic maps to sequentially update
the state of 𝑝 consistent with the piece-wise solutions to the
Hamiltonian equations for each 𝐸𝑖:

𝑝 (𝑖) ← 𝐸𝑖 (𝑝 (𝑖 − 1)) 𝑖 ∈ [0, 𝑁𝑒𝑙𝑒𝑚) . (1)

Applying (1) for all 𝑖 and repeating the operation un-
til 𝑝 has traversed until turn 𝑁 in a circular accelerator
is an inherently sequential operation with only very few
opportunities for parallelisation1. While performing the
simulation for a single 𝑝 is useful, most real-world sce-
narios require to simulate an ensemble of 𝑁𝑝 particles i.e.,
𝑝𝑗 ≡ (Q) [𝑗] , 𝑗 ∈ [0, 𝑁𝑝).

Algorithm 1 Track all active particles in (Q) over a lattice
(E) until all particles are in turn 𝑁 or they are lost.

1: procedure track_until((Q), (E), 𝑁)
2: for 𝑗 ← 0 to 𝑁𝑝 − 1 do
3: 𝑝𝑗 ≡ (Q) [𝑗]

4: while (not is_lost(𝑝𝑗) and
get_at_turn(𝑝𝑗) < 𝑁) do

5: for 𝑖 ← 0 to 𝑁𝑒𝑙𝑒𝑚 − 1 do
6: 𝐸𝑖 ≡ (E) [𝑖]
7: 𝑝𝑗 ← 𝐸𝑖 (𝑝𝑗)
8: if is_lost(𝑝𝑗) then
9: break

10: if not is_lost(𝑝𝑗) then
11: increment_at_turn(𝑝𝑗)

Note that particles need at least some additional state to
keep track of the current turn and whether the particle has
been lost. For 𝑁𝑝 ≫ 1, the loop over all particles (line 2 in
Alg. 1) allows, due to the single-particle approach, a very
efficient parallelisation.

Baseline Parallel Implementation
Typical use-cases for Alg. 1 have 𝑁𝑝 = 100 to 107 parti-

cles, 𝑁𝑒𝑙𝑒𝑚 = 101 to 105 elements in a lattice, and 𝑁 = 100

to > 107 turns. Given this wide range of scale, SixTrackLib

1 I.e., OpenMP-style loop parallelisation, or single-instruction, multiple-
data (SIMD) vectorisation, which both apply only to specific maps

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB190

THPAB190C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

4146

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

supports sequential and multiple parallel computational back-
ends (single-threaded and vectorised code for CPUs, and
both OpenCL 1.2 [4] and CUDA [5], respectively). Source
code for implementing the physics is shared between all
three back-ends. A common implementation in particular
for OpenCL and CUDA is possible because both abstract the
target hardware in a similar way (i.e., “threads” organised
on hierarchical grid, “teams” of threads operate in lockstep,
segmented memory, etc.), and both support a similarly struc-
tured C99-like kernel language, allowing abstractions via
C pre-processor macros.

In addition to the principal six degrees of freedom and
the state variables to enable the “logistical” particle loss
operations in Alg. 1, SixTrackLib uses 11 additional double-
precision floating point and 2 additional integer attributes for
each particle to cache frequently required auxiliary results
and carry information about the reference particle. Ensem-
bles of particles (Q) are stored in struct-of-array arrange-
ment. Storing a complete set of of attributes for each 𝑝𝑗 in
this fashion increases the memory footprint but provides a
more flexible data model, eases SIMD-style vectorisation
across particles, and results in neighbouring GPU threads ac-
cessing neighbouring sections of device memory (coalesced
access, cf. sub-figure a) in Fig. 2). Caching intermediate
results is also beneficial for numerical reproducibility rea-
sons. Preparing a structure with pointer data-members on
the host-side and transferring it to device memory on a GPU
is non-trivial as the member pointers remain pointing to
their original location. In order to remain consistent, all
such pointers have to be “remapped” after any copy opera-
tion (cf. sub-figure b) of Fig. 2). To this end, SixTrackLib
uses cobjects [6], a self-developed container library for ex-
changing data between host and GPU devices. The buffers
provided by cobjects allow 𝒪(1) lookup of stored elements
and zero-copy, zero-overhead read/write access on stored
items2. For the base-line implementation, both particles and
beam elements are stored using device global memory.

0x0a

@0x0a

0x1a

@0x1a@0x01

0x0a

@0xda

0x1a

@0xea@0xd1

0xda

@0xda

0xea

@0xea@0xd1

...

...

...

...

...

...

b)

member pointers

Stored
Object

m
em

co
py

re
m

ap

a)
...
...
...
...
...
...

...

...

...

...

...

particle_id :

at_element :

at_turn :

state :

4
x
i
n
t
6
4
_
t

ar
ra

ys
17

 x
 d
o
u
b
l
e

ar

ra
ys

....

....

....

Figure 2: a) Struct-of-arrays storage model for sets of parti-
cles. b) Schematic principle for storing structured objects
with member pointers in a cobjects buffer.

Feature Extensions & Interfaces
Using cobject buffers does not preclude direct manip-

ulation of pointers on the device side. SixTrackLib pro-

2 At the cost of increased complexity and reduced flexibility during the
creation / initial arrangment of items in a cobjects buffer

Tricub
Elem.

Tricub
Elem.

Tricub
Elem.

Tricub Data For
Interpolation

Lattice

...

Figure 3: Multiple items in a cobjects buffer sharing data.

vides tools to manipulate device-side pointers, so that shar-
ing slices of data across several beam elements is feasi-
ble. An example is the calculation of symplectic kicks
from electron cloud contributions via tri-cubic interpola-
tion of a potential [7], which requires data-tables with ap-
prox. 108 to 109 Bytes each. Replicating these tables at
each required lattice position would not be possible due to
the cumulative global memory requirements. However, by
allowing tables to be shared across all elements using the
same data (cf. Fig. 3), intensive simulations of this type have
successfully been performed using SixTrackLib. Similarly,
SixTrackLib implements a frozen space charge model which,
among others, features an interpolated line-charge density
profile, allowing the discretised line-profile data to be shared
among the beam elements [8]. It uses the same interfaces as
the previous example but the main aim here is to simplify
updates to the charge-density profile over the course of the
simulation.

Finally, by implementing tracking modes that traverse
only a subset of a turn in addition to Alg. 1 and exposing
the particle data stored in device memory, SixTrackLib al-
lows a seamless integration and hand-off of tracking duties
with other algorithms and libraries. This enables for exam-
ple seamless integration between PyHEADTAIL [9] and
SixTrackLib. Here, SixTrackLib handles the tracking of
sections that are suitable for efficient single-particle tracking
code and hands-off to PyHEADTAIL for sections of the ma-
chine representing collective effects. These extensions and
additional interfaces increase the versatility and usefulness
of SixTrackLib, but also put additional constraints on some
strategies to improve the numerical performance.

PERFORMANCE ANALYSIS &
OPTIMISATION

Baseline Performance
The implementation described in the previous section

corresponds to version 0.5 of SixTrackLib [1]. Using an
example lattice from CERN’s LHC with imperfections but
without beam-beam or space charge effects. Figure 4 shows
the normalised tracking time 𝑡𝑡𝑟𝑎𝑐𝑘 = 𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑/(𝑁𝑝 ⋅ 𝑁) as a
function of 𝑁𝑝, for a representative set of target systems.

With increasing 𝑁𝑝, parallelisation overheads and laten-
cies should eventually be amortised, resulting in approx.
constant 𝑡𝑡𝑟𝑎𝑐𝑘. All presented systems show this expected
behaviour. Even with grid dimensions adapted to preferable
warp/wave-front sizes, run-time performance can vary con-
siderably for similar 𝑁𝑝. Therefore, the median 𝑡𝑡𝑟𝑎𝑐𝑘 over
the range most interesting for GPUs i.e., 𝑁𝑝 = 104 to 106

(cf. detail in right half of Fig. 4) is used to calculate the

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB190

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

THPAB190

4147

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Single Core / Single Thread

CPU, Multithreaded

Consumer Grade GPUs

HPC GPUs

557.8e-6
588.2e-6

11.6e-6
16.6e-6

 6.6e-6

 1.2e-6

29.1e-6

48.0
33.4

84.2

476.8

19.1

 5.4e-6 104.0

Figure 4: Normalised tracking time (i.e., elapsed wall-time per particle and turn, lower numbers are better) as a function of
𝑁𝑝 on a selection of hardware targets for the CERN LHC lattice. (𝑃0 ⋅ 𝑐) = 6.5 TeV, starting conditions have been chosen
such that no particles are lost.

speed-ups. For the presented (quite representative) scenario,
even lower-end consumer GPUs with poor double precision
performance ratios (i.e., 1:32 for the GTX1050 Ti) yield
median speedups of > 𝒪(10) compared to sequential track-
ing on the fastest tested CPU. Using more powerful GPUs
with a 1:2 double precision performance ratio, speedups
of ≥ 𝒪(100) are easily reachable. Using multi-threaded
OpenCL parallelisation on CPUs typically yields perfor-
mance in between consumer- and HPC-grade GPUs. For
these systems, optimal scaling (i.e. constant 𝑡𝑡𝑟𝑎𝑐𝑘) sets in
at lower 𝑁𝑝 = 101 … 103, depending on the parallel run-
time and CPU). The sequential, single-core CPU back-end
of SixTrackLib also performs approx. > 𝒪(10) better than
recent versions of MAD-X (< 10−3𝑠 vs. ≃ 0.01𝑠 for the
LHC [10])3, further demonstrating the competitiveness of
SixTrackLib.

Optimisation Strategy
In order to improve the run-time performance, the follow-

ing optimisation options have been implemented compared
to Alg. 1: a) create a private copy of 𝑝𝑗 for each thread (i.e.,
change line 3) and write back after finishing tracking, b)
eliminate the nested loop over all elements (cf. line 5) by in-
troducing a special lattice terminating beam element which
handles the roll-over into the next turn, thus simplifying the
logic and aiding the compilers in optimisation, and c) re-
duce the number of thread-local variables to reduce register
pressure and avoid spilling.

Selected Results
Applying optimisations a) to c) to the same configuration,

numerical experiments conducted at CERN and GSI reveal
3 Comparisons are only meaningful up to orders of magnitude due to

the significantly wider range of capabilities and the large number of
parameters influencing the performance of MAD-X.

performance gains across all studied GPU systems. Fig-
ure 5 shows the improvements for the AMD Radeon VII and
NVIDIA Titan-V cards, with typical improvement factors
around 2× (cf. [11]).

Figure 5: Same lattice and particle configuration as before
but with optimisations, run-time performance improves for
the presented GPU systems, typically by about a factor of 2.

CONCLUSIONS & OUTLOOK
Writing a tracking library with good parallel performance

across a large range of simulated particles 𝑁𝑝 and for a di-
verse set of hardware is feasible. The presented optimised
implementation provides satisfactory performance: sorted
by increasing speedup, simulations profit from parallelisa-
tion on consumer-grade GPUs, multi-core high-end CPUs
and finally high-end GPUs. Further investigations about
the contributing factors to the scaling behaviour are needed.
Of particular interest are lattices containing beam elements
contributing significantly to the register pressure. Scenar-
ios where the extended interfaces for sharing data are not
required could benefit from moving the lattice or parts of
the particle data to constant or shared device memory, war-
ranting further investigations. The presented optimisations
will be part of the upcoming version 1.0 of SixTrackLib.

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB190

THPAB190C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

4148

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

REFERENCES
[1] SixTrackLib source code repository,
https://github.com/SixTrack/sixtracklib

[2] R. De Maria et al., “SixTrack V and runtime environment”,
International Journal of Modern Physics A, vol. 34, no. 36,
p. 1942035, 2019.
doi:10.1142/S0217751X19420351

[3] SixTrack source code repository,
https://github.com/SixTrack/sixtrack

[4] J. E. Stone et al. “OpenCL: A Parallel Programming Stan-
dard for Heterogeneous Computing Systems”, Computing in
Science & Engineering, vol. 12, no. 3, p. 66–72, 2010.
doi:10.1109/mcse.2010.69

[5] J. Nickolls et al., “Scalable Parallel Programming with
CUDA”, Queue, vol. 6, no. 2, p. 40 – 53, 2008.
doi:10.1145/1365490.1365500

[6] CObjects source code repository,
https://github.com/SixTrack/cobjects

[7] K. Paraschou and G. Iadarola, “Incoherent electron cloud
effects in the Large Hadron Collider”, CERN Yellow Rep.
Conf. Proc., vol. 9, pp. 249–255, Dec. 2020.
doi:10.23732/CYRCP-2020-009.249

[8] A. Oeftiger et al., “Simulation study of the space charge limit
for the FAIR Heavy-ion Synchrotron SIS100”, 2021, to be
published.

[9] PyHEADTAIL source code repository,
https://github.com/PyCOMPLETE/PyHEADTAIL

[10] T. H. B. Persson, H. Burkhardt, L. Deniau, A. Latina, and P. K.
Skowronski, “MAD-X for Future Accelerators”, presented at
the 12th Int. Particle Accelerator Conf. (IPAC’21), Campinas,
Brazil, May 2021, paper WEPAB028.

[11] ipac21_sixtracklib: Complementary repository containing
raw timing data and information about the presented
hardware systems,
https://github.com/martinschwinzerl/ipac21_
sixtracklib

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB190

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

THPAB190

4149

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

