MC7: Accelerator Technology
T25 Lasers
Paper Title Page
MOPAB171 Numerical Simulation on Plasma-Based Beam Dumps Using Smilei 582
 
  • S. Kumar, C. Davut, G.X. Xia
    UMAN, Manchester, United Kingdom
  • A. Bonatto, C. Davut, L. Liang
    The University of Manchester, Manchester, United Kingdom
  • A. Bonatto
    Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
  • B.S. Nunes
    IF-UFRGS, Porto Alegre, Brazil
  • R.P. Nunes
    UFRGS, Porto Alegre, Brazil
 
  The active plasma beam dump utilizes a laser to generate a plasma wakefield and decelerate an externally injected beam to low energy. We use the particle-in-cell code "Smi-lei" for the investigation of electron beam energy loss in plasma. In this research work, we optimize the laser and plasma parameters to investigate the active plasma beam dump scheme. In doing so, most of the beam energy will be deposited in the plasma. The optimization strategy for the beam energy loss in plasma is presented.
*A. Bonatto, C. B. Schroeder et al., Physics of Plasmas 22 (8) 083106 (2015).
*G. Xia, A. Bonatto et al., Instruments 4 (2) 10 (2020).
*A Bonatto et al., J. Phys.: Conf. Ser. 1596 012058, 2020.
 
poster icon Poster MOPAB171 [0.756 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB171  
About • paper received ※ 15 May 2021       paper accepted ※ 24 May 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB378 Near-Infrared Laser System for Dielectric Laser Acceleration Experiments at SINBAD 3596
 
  • C. Mahnke, U. Grosse-Wortmann, I. Hartl, C.M. Heyl, Y. Hua, T. Lamb, Y. Ma, C. Mohr, J. Müller, S.H. Salman, S. Schulz, C. Vidoli
    DESY, Hamburg, Germany
  • H. Çankaya
    CFEL, Hamburg, Germany
 
  The technique of dielectric laser acceleration (DLA) utilizes the strong field gradients generated by intense laser light near the surfaces of microscopic photonic structures, possibly allowing compact accelerator devices. We report on the infrared laser system at the SINBAD facility at DESY, where first DLA experiments with relativistic electrons pre-accelerated by the ARES linear accelerator started in late 2020. We constructed a low-noise Holmium fiber oscillator producing pulses at a wavelength of 2050 nm, seeding a Ho:YLF regenerative amplifier. Pulses of 2 mJ and 2 ps duration from the amplifier are transported over a distance of about 30 m to the DLA interaction point. The laser system is synchronized to the accelerator by locking the laser repetition rate to an RF master oscillator using an all-digital phase-locked loop, giving a residual timing jitter of about 45 fs. The digital locking scheme allows precise shifting of the relative timing between laser pulses and electrons without need for a dedicated optical delay line. It is planned to lock the system to the UV photocathode laser by means of an optical cross correlator further to improve the locking performance.  
poster icon Poster WEPAB378 [1.445 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB378  
About • paper received ※ 19 May 2021       paper accepted ※ 22 June 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB379 Photocathode Laser Development for Superconducting X-Ray Free Electron Lasers at DESY 3599
 
  • C. Li, O. Akcaalan, U. Grosse-Wortmann, I. Hartl, C. Mohr, M. Seidel, H. Tuennermann, C. Vidoli, L. Winkelmann
    DESY, Hamburg, Germany
  • M. Frede, O. Puncken
    neoLASE GmbH, Hanover, Germany
 
  Funding: Deutsches Elektronen-Synchrotron, Hamburg, 22609, Germany
Modern X-Ray Free-Electron Lasers (XFEL) are a key tool to enable a variety of scientific research. Those large-scale machines rely on robust and reliable deep ultraviolet (DUV) laser sources to drive electrons from their RF photocathode gun. In this paper we present a new photocathode laser prototype, which offers more flexibility in duration and shape of the 257.5 nm pulses for driving the CsTe Photocathodes of DESY’s superconducting burst-mode FELs. The laser matches the FEL pulse structure, which are 800 µs bursts at up to 4.5 MHz intraburst-rate with 10 Hz burst-repetition-rate. In a first version the system will offer variable DUV pulse durations, tunable from 1 ps to 20 ps to address different operational regimes of the XFEL. The laser system comprises a high-resolution spectral shaper with the option of generating flat-top DUV pulses for reducing electron-beam emittance at a later version. The laser is constructed in a hybrid Yb:fiber and Yb:YAG architecture. Our prototype delivers 180 uJ pulse energy at 1030 nm and 1 MHz intra-burst rate and we demonstrated conversion of 50µJ of the NIR beam to DUV, resulting 11.5µJ at 21ps (FWHM) and 6.15 µJ at 1.05 ps (FWHM) pulse duration.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB379  
About • paper received ※ 27 May 2021       paper accepted ※ 02 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB313 Drive Laser System for Shanghai Soft X-Ray Free Electron Laser 4403
 
  • L. Feng, C.L. Li, B. Liu, J.G. Wang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • X. Lu
    ANL, Lemont, Illinois, USA
  • X.T. Wang, W.Y. Zhang
    Shanghai Advanced Research Institute, Pudong, Shanghai, People’s Republic of China
 
  In this paper, we introduce the design and layout of the drive laser of Shanghai Soft X-ray Free Electron Laser (SXFEL). It is known that the temporal and spatial distribution of the drive laser is crucial for high-quality electron beams. The drive laser provides the laser pulse of 266nm wavelength and 8ps pulse duration for the photocathode, as well as 400nm wavelength, 2-20ps tunable pulse duration for the laser heater. For this purpose, there are mainly four parts in such system, including a third-harmonic generation device, pulse stretcher, image transmitted system, and laser optical module for laser heater. Finally, the measured results of the electron beam under this drive laser system are presented and discussed.  
poster icon Poster THPAB313 [0.691 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB313  
About • paper received ※ 20 May 2021       paper accepted ※ 15 July 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB349 Feed-Forward Neural Network Based Modelling of an Ultrafast Laser for Enhanced Control 4478
 
  • A. Aslam, M. Martínez-Ramón, S.D. Scott
    UNM-ECE, Albuquerque, USA
  • S. Biedron
    Argonne National Laboratory, Office of Naval Research Project, Argonne, Illinois, USA
  • S. Biedron
    Element Aero, Chicago, USA
  • S. Biedron
    UNM-ME, Albuquerque, New Mexico, USA
  • M. Burger, J. Murphy
    NERS-UM, Ann Arbor, Michigan, USA
  • K.M. Krushelnick, J. Nees, A.G.R. Thomas
    University of Michigan, Ann Arbor, Michigan, USA
  • Y. Ma
    IHEP, Beijing, People’s Republic of China
  • Y. Ma
    Michigan University, Ann Arbor, Michigan, USA
 
  Funding: Acknowledgements: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under award number DE-SC0019468.
The applications of machine learning in today’s world encompass all fields of life and physical sciences. In this paper, we implement a machine learning based algorithm in the context of laser physics and particle accelerators. Specifically, a neural network-based optimisation algorithm has been developed that offers enhanced control over an ultrafast femtosecond laser in comparison to the traditional Proportional Integral and derivative (PID) controls. This research opens a new potential of utilising machine learning and even deep learning techniques to improve the performance of several different lasers and accelerators systems.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB349  
About • paper received ※ 20 May 2021       paper accepted ※ 02 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)