MC7: Accelerator Technology
T11 Power Supplies
Paper Title Page
TUPAB388 Efficiency, Power Loss, and Power Factor Measurement of Quadrupole Magnet Power Supplies at the Spallation Neutron Source 2428
 
  • S. Harave
    ORNL, Oak Ridge, Tennessee, USA
  • B. Morris
    SLAC, Menlo Park, California, USA
 
  The linear accelerator (LINAC) quadrupole magnets are powered by 42 silicon-controlled rectifier (SCR) based power supplies at the Spallation Neutron Source (SNS) facility of Oak Ridge National Laboratory. These 35V, 525A power supplies are bulky, inefficient and require both air and water cooling. The reliability of the SNS facility is impacted due to water leaks internal to power supplies and current readback issues associated with their unique control system interface, resulting in multiple downtime events. Hence, an alternate solution is necessary for the continued reliable operation of the SNS. To mitigate the above-mentioned problems, this paper proposes the use of off-the-shelf Switch Mode Power Supplies (SMPS) rated for 20V, 500A with serial control interface. These SMPS are air-cooled, more efficient and more compact owing to their switching speeds of approximately 160 kHz. The performance enhancements of the SMPS in comparison with the existing SCR power supply are discussed in detail in this paper. The features of the SMPS, along with experimental results for both power supplies, like efficiency, power losses and stability, are presented. Ongoing work is also discussed.  
poster icon Poster TUPAB388 [0.420 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB388  
About • paper received ※ 17 May 2021       paper accepted ※ 31 May 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB389 High Precision Four Quadrant Converter with GaN Technology 2431
 
  • M. Incurvati, T. Margreiter, R. Stärz
    MCI, Innsbruck, Austria
  • T. Riedler
    NTUT, Taipei City, Taiwan
 
  New proton therapy facilities for the cure of tumors as well as high-energy photon sources are currently being installed all around the world. In this field, the request for special power supplies for corrector, scanning, and quadrupole magnets are increasing. For these applications, mandatory requirements are high bandwidth and current stability as well as low output ripple which are conflicting constraints. A feasibility study, prototype development, measurements, and investigations on the control methodology of a wide-bandgap GaN semiconductor-based power module is presented in the paper. The developed power module features the following characteristics: Eurocard standard PCB, bipolar 4Q operation, minimum switching frequency 100 kHz, bandwidth 5 kHz, output voltage and current up to 200 V / 8 A, output current ripple <20 ppm. The enlisted characteristics make it suitable for high inductive loads requiring fast transients (scanning magnets). An RST controller will be developed and a system identification approach to the transfer function of two parallel-connected power modules will be presented along with simulations assessing the performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB389  
About • paper received ※ 19 May 2021       paper accepted ※ 25 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)