Paper |
Title |
Page |
MOPAB074 |
Preliminary Study of Design Method for Hybrid MBA Lattice |
297 |
|
- J.J. Tan, Z.H. Bai, Z.L. Ren, J.H. Xu
USTC/NSRL, Hefei, Anhui, People’s Republic of China
- Q. Zhang
INEST, Hefei, People’s Republic of China
|
|
|
Nonlinear optimization of hybrid multi-bend-achromat (HMBA) lattice is a difficult task due to its quite limited variables of multipole magnets. As a result, it is necessary to consider nonlinear potential of the lattice in its linear design. Nonlinear dynamics can be estimated by nonlinear driving terms and detuning terms. In this paper, we propose a design method for HMBA lattice. In this method, objective functions include emittance and two indicators of nonlinear dynamics, which consist of nonlinear driving terms and detuning terms. As an example, an HMBA lattice for a 2.2 GeV storage ring with circumference of 460.8 m was designed to demonstrate the method.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB074
|
|
About • |
paper received ※ 19 May 2021 paper accepted ※ 21 May 2021 issue date ※ 21 August 2021 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPAB073 |
Study of Seven-Bend-Achromat Lattice Option for Half |
3926 |
|
- J.H. Xu, Z.H. Bai, Z.L. Ren, J.J. Tan, P.H. Yang
USTC/NSRL, Hefei, Anhui, People’s Republic of China
- Q. Zhang
INEST, Hefei, People’s Republic of China
|
|
|
A seven-bend-achromat (7BA) storage ring lattice design for Hefei Advanced Light Facility (HALF) with a beam energy of 2.2 GeV and a circumference of 388.8 m is presented. The 7BA lattice is designed with the combined function bends and reverse bends which has a natural emittance of about 67 pm·rad. Two lattice candidates with different tunes have been selected. One lattice has better nonlinear dynamic performance for off-axis injection. The other lattice provides lower beta functions at the center of straight sections. The results of these studies are discussed in this paper.
|
|
|
Poster THPAB073 [1.146 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB073
|
|
About • |
paper received ※ 15 May 2021 paper accepted ※ 28 July 2021 issue date ※ 16 August 2021 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|