Paper |
Title |
Page |
TUPAB086 |
FLASH2020+ Plans for a New Coherent Source at DESY |
1581 |
|
- E. Allaria, N. Baboi, K. Baev, M. Beye, G. Brenner, F. Christie, C. Gerth, I. Hartl, K. Honkavaara, B. Manschwetus, J. Mueller-Dieckmann, R. Pan, E. Plönjes-Palm, O. Rasmussen, J. Rönsch-Schulenburg, L. Schaper, E. Schneidmiller, S. Schreiber, K.I. Tiedtke, M. Tischer, S. Toleikis, R. Treusch, M. Vogt, L. Winkelmann, M.V. Yurkov, J. Zemella
DESY, Hamburg, Germany
|
|
|
With FLASH2020+, a major upgrade of the FLASH facility has started to meet the new requirements of the growing soft-x ray user community. The design of the FEL beamlines aims at photon properties suitable to the needs of future user experiments with high repetition rate XUV and soft X-ray radiation. By the end of the project, both existing FEL lines at FLASH will be equipped with fully tunable undulators capable of delivering photon pulses with variable polarization. The use of the external seeding at 1 MHz in burst mode is part of the design of the new FLASH1 beamline, while FLASH2 will exploit novel lasing concepts based on different undulator configurations. The new FLASH2020+ will rely on an electron beam energy of 1.35 GeV that will extend the accessible wavelength range to the oxygen K-edge with variable polarization. The facility will be completed with new laser sources for pump and probe experiment and new experimental stations.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB086
|
|
About • |
paper received ※ 19 May 2021 paper accepted ※ 27 May 2021 issue date ※ 23 August 2021 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAB102 |
A New 2nd Bunch Compression Chicane for the FLASH2020+ Project |
1618 |
|
- M. Vogt, J. Zemella
DESY, Hamburg, Germany
|
|
|
The first stage of the FLASH2020+ project is an upgrade of the FLASH injector beamline. Within this framework, the 2nd bunch compression chicane (BCC) will be completely redesigned. The old S-chicane will be replaced with a new C-chicane which is 3.5m shorter thereby generating space a new section for re-matching the beam from the injector into the linac. The new BCC will be equipped with quad/skew-quad units in both legs of the chicane to compensate correlations of the transverse degrees of freedom with the longitudinal ones. Since quadrupoles tend to have a circular bore, the chicane is designed with movable round vacuum chambers and movable dipoles for maintaining full flexibility in choosing the compression parameters. This article describes the technical details and introduces a thin-lens model of BCCs which allows analytical estimates on the effects of powering the quad/skew-quad units on optics parameters as well as estimates on the required strengths of these magnets in order to remove correlations of the magnitudes typically observed at FLASH.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB102
|
|
About • |
paper received ※ 19 May 2021 paper accepted ※ 14 June 2021 issue date ※ 29 August 2021 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAB104 |
Redesign of the FLASH2 Post-SASE Undulator Beamline |
1626 |
|
- F. Christie, J. Rönsch-Schulenburg, S. Schreiber, M. Vogt, J. Zemella
DESY, Hamburg, Germany
|
|
|
FLASH2 is one of the two SASE (Self-Amplified Spontaneous Emission) undulator beamlines lines comprising variable gap undulators to produce radiation in the XUV and soft X-ray regime at FLASH. Downstream of the SASE undulators the beamline is currently undergoing a major redesign. During shutdowns in summer 2020 and winter 2021 two PolariX TDSs (Polarizable X-band Transverse Deflecting Structure) were installed, as well as additional diagnostics, to monitor the longitudinal phase space density of the electron bunches. Additionally, an afterburner undulator will be integrated in the next shutdown to produce circularly polarized light with wavelengths down to 1.39 nm. In this paper, we will present the modifications that were and will be made to the electron beamline in the course of this redesign.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB104
|
|
About • |
paper received ※ 19 May 2021 paper accepted ※ 21 July 2021 issue date ※ 23 August 2021 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAB111 |
Layout of the Laser Heater for FLASH2020+ |
1647 |
|
- C. Gerth, E. Allaria, A. Choudhuri, L. Schaper, E. Schneidmiller, S. Schreiber, M. Tischer, P. Vagin, M. Vogt, L. Winkelmann, M.V. Yurkov, J. Zemella
DESY, Hamburg, Germany
|
|
|
The major upgrade FLASH2020+ of the FEL user facility FLASH includes an improved injector layout for the generation of the high-brightness electron beam as well as an externally seeded FEL beamline. Microbunching gain of initial modulations or shot-noise fluctuations degrade the electron beam quality, which is in particular harmful to the external seed process. To minimize the microbunching gain by a controlled increase of the uncorrelated energy spread, the installation of a laser heater is foreseen directly upstream of the first bunch compression chicane. In this paper, we present the layout of the laser heater section, which follows the original proposal published almost 20 years ago and differs in several aspects from the common layout implemented at many other FEL facilities. The considerations that have been made for the optimisation of the laser heater parameters are described in detail.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB111
|
|
About • |
paper received ※ 19 May 2021 paper accepted ※ 07 July 2021 issue date ※ 01 September 2021 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAB115 |
Status Report of the Superconducting Free-Electron Laser FLASH at DESY |
1659 |
|
- J. Rönsch-Schulenburg, F. Christie, K. Honkavaara, M. Kuhlmann, S. Schreiber, R. Treusch, M. Vogt, J. Zemella
DESY, Hamburg, Germany
|
|
|
The free-electron laser in Hamburg (FLASH) is a high brilliance XUV and soft X-ray SASE FEL user-facility at DESY. FLASH’s superconducting linac can accelerate several thousand electron bunches per second in 10 Hz bursts of up to 800 µs length. The long bunch trains can be split in two parts and shared between two undulator beamlines. During 2020, FLASH supplied, in standard operation, up to 500 bunches at 10 Hz in two bunch trains with independent fill patterns and compression schemes. The FLASH2 undulator beamline comprises variable gap undulators that allow different novel lasing schemes. A third beamline accommodates the FLASHForward plasma wakefield acceleration experiment. We report on the FLASH operation in 2019 - 2021 and present a few highlights.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB115
|
|
About • |
paper received ※ 19 May 2021 paper accepted ※ 21 June 2021 issue date ※ 19 August 2021 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPAB226 |
Investigation of Vlasov Systems with a Certain Class of Linearly-Collective Hamiltonians |
3157 |
|
- Ph. Amstutz, M. Vogt
DESY, Hamburg, Germany
|
|
|
In many cases the Vlasov equation cannot be solved exactly due its inherent non-linearity arising from collective terms in the Hamiltonian. Based on the analysis of the Hamiltonian’s dependence on the phase-space density and the requirement for self-consistency in this contribution a class of Hamiltonians is defined and characterized. For members of this class the corresponding expansion of the Vlasov equation terminates. The new, potentially non-autonomous, Hamiltonian of the resulting Liouville equation depends only on the initial condition of the phase-space density. Prominent members of this class are Poisson-type kick-Hamiltonians, which we show as an example. We expect these investigations to be a potential starting point for the analysis and conception of operator-splitting schemes or splitting-free methods for beam-dynamics simulation codes.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB226
|
|
About • |
paper received ※ 18 May 2021 paper accepted ※ 01 July 2021 issue date ※ 17 August 2021 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|