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Abstract
In many cases the Vlasov equation cannot be solved

exactly due its inherent non-linearity arising from collec-
tive terms in the Hamiltonian. Based on the analysis of
the Hamiltonian’s dependence on the phase-space density
and the requirement for self-consistency in this contribu-
tion a class of Hamiltonians is defined and characterized.
For members of this class the corresponding expansion of
the Vlasov equation terminates. The new, potentially non-
autonomous, Hamiltonian of the resulting Liouville equa-
tion depends only on the initial condition of the phase-space
density. Prominent members of this class are Poisson-type
kick-Hamiltonians, which we show as an example. We ex-
pect these investigations to be a potential starting point for
the analysis and conception of operator-splitting schemes or
splitting-free methods for beam-dynamics simulation codes.

INTRODUCTION
The Liouville equation

⎧{
⎨{⎩

𝜕Ψ
𝜕𝑡 − {𝐻, Ψ} = 0

Ψ(0, 𝑧) = Ψ0(𝑧)
(1)

is the evolution equation for the phase-space density (PSD)
Ψ(𝑡, 𝑧) ∶ ℝ × ℝ2𝑛 → ℝ of a system of non-interacting,
identically independently distributed (iid) particles with the
Hamiltonian 𝐻(𝑡, 𝑧) ∶ ℝ × ℝ2𝑛 → ℝ, where 𝑛 is the number
of geometric degrees of freedom, Ψ(𝑡, 𝑧) d𝑧 is the probability
that any of the particles is in the PS volume element d𝑧 at
time 𝑡, and {⋅, ⋅} denotes the Poisson bracket

{𝑢, 𝑣} ≡ (∇𝑧𝑢)T𝐽∇𝑧𝑣 ≡
2𝑛
∑

𝑖,𝑗=0
𝐽𝑖𝑗

𝜕𝑢
𝜕𝑧𝑖

𝜕𝑣
𝜕𝑧𝑗

. (2)

𝐽 ∈ ℝ2𝑛×2𝑛 is an antisymmetric matrix, whose actual
representation depends on the choice of the base of the
phase space. The Liouville equation therefore defines a
linear first-order differential equation, that can be read-
ily solved using the method of characteristics [1]. Given
the (generally non-linear) symplectic (i.p. injective) flow
𝜙(𝑡1, 𝑡0, 𝑧)∶ ℝ × ℝ × ℝ2𝑛 → ℝ2𝑛 of the Hamiltonian, an
explicit solution to the initial value problem (IVP) (1) is
given by

Ψ(𝑡, 𝑧) = Ψ0(𝜙(0, 𝑡, 𝑧)), (3)

where have used 𝜙−1(𝑡, 0, ⋅) = 𝜙(0, 𝑡, ⋅). Hence, solving Li-
ouville’s equation is as hard as solving Hamilton’s equation
of motion.
∗ philipp.amstutz@desy.de

The Vlasov equation

⎧{
⎨{⎩

𝜕Ψ
𝜕𝑡 − {𝐻[Ψ], Ψ} = 0

Ψ(0, 𝑧) = Ψ0(𝑧)
(4)

extends the Liouville equation to include interactions of iid
particles in the mean field approximation. Here this mean
field interaction is accounted for by introducing a depen-
dence of the Hamiltonian 𝐻[Ψ] itself on the PSD. Due to
this dependence Eq. (4) is a non-linear partial different equa-
tion. Consequently, the method of characteristics is not di-
rectly applicable anymore and exact solutions can generally
not be found. Nevertheless, the method of characteristics has
been successfully used in the field of collective beam dynam-
ics (within which it is also known as the Perron-Frobenius
method) to construct approximate solutions of the Vlasov
equation [2, 3].

In this contribution we show that for certain Hamiltonians
exact solutions of Eq. (4) indeed can be found. To this end
we define a class of Hamiltonians, for which the Vlasov
Equation degenerates in to an effective Liouville equation,
making it explicitly solvable.

EXPANDING THE VLASOV EQUATION
A formal solution to the IVP (4) can be obtained by inte-

grating over 𝑡

Ψ(𝑡, 𝑧) = Ψ0(𝑧) + ∫
𝑡

0
𝜕Ψ
𝜕𝑡′ d𝑡′ (5)

= Ψ0(𝑧) + ∫
𝑡

0
{𝐻[Ψ], Ψ}|𝑡′ d𝑡′ (6)

Putting this expression for Ψ back into the Vlasov Equa-
tion (4) yields

𝜕Ψ
𝜕𝑡 − {𝐻 [Ψ0 + ∫

𝑡

0
{𝐻[Ψ], Ψ}|𝑡′ d𝑡′] , Ψ} = 0, (7)

where we have substituted Ψ only in the first argument of
the Poisson bracket. We note that the non-linearity of the
resulting expanded Vlasov equation is now isolated in the
time-integral term.

This substitution can be repeated iteratively for Eq. (7)
and the resulting equations, leading to an iteration procedure
closely related to the concepts of Magnus expansion and
Picard iteration. If at each iteration step the substitution is
carried out for all occurrences of Ψ on the left-hand side of
the outermost Poisson bracket only (leaving the Ψ on the
right-hand side untouched) the basic structure of an Vlasov
equation retained. One might be hopeful that the Liouville
equation obtained by truncating that iteration at some or-
der and neglecting any further occurrences of Ψ yields a
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good approximation of the original Vlasov equation. In this
contribution, however, we will focus on a class of collec-
tive Hamiltonians for which this expansion truncates exactly
after the first iteration.

AFFINE LINEARLY COLLECTIVE
HAMILTONIANS

Assume now that 𝐻[Ψ] is not explicitly time dependent
and is affine linear in its collective dependence, in the sense
that for 𝛼, 𝛽 ∈ ℝ

𝐻[𝛼Ψ + 𝛽Φ] = 𝐻𝑐[𝛼Ψ + 𝛽Φ] + 𝐻0 (8)
= 𝛼𝐻𝑐[Ψ] + 𝛽𝐻𝑐[Φ] + 𝐻0, (9)

where 𝐻𝑐 is the collective Hamiltonian and 𝐻0 is a single-
particle Hamiltonian with no dependence on the phase-space
density. Additionally exploiting the linearity of Poisson’s
bracket, Eq. (7) then becomes

𝜕Ψ
𝜕𝑡 − {𝐻 [Ψ0] , Ψ} − ∫

𝑡

0
{𝐻𝑐 [ {𝐻[Ψ], Ψ}|𝑡′] , Ψ} d𝑡′ = 0.

(10)
Hence, if for all Ψ

𝐻𝑐 [{𝐻[Ψ], Ψ}] = 0 (11)

then the Vlasov equation for this Hamiltonian degenerates
to

𝜕Ψ
𝜕𝑡 − {𝐻[Ψ0], Ψ} = 0, (12)

which effectively is a Liouville Equation, as the Hamiltonian
does not depend on the evolution of the PSD Ψ but only on
its initial condition Ψ0. As Eq. (11) needs to hold for any
choice of Ψ it follows that is has to hold for the collective
and non-collective part of the Hamiltonian in the Poisson
bracket individually

𝐻𝑐 [{𝐻𝑐[Ψ], Ψ}] = 0 (13)
and 𝐻𝑐 [{𝐻0, Ψ}] = 0. (14)

Equation (11) states the condition that the collective part of
the Hamiltonian needs to be invariant under the time-derivate
of Ψ, which in turn is given by the Poisson bracket of the
Hamiltonian itself and Ψ. Hence, it can be interpreted as the
defining property of a class of self-preserving Hamiltonians.

Convolution Hamiltonians
Consider the case, where the collective part of the Hamil-

tonian is determined by the convolution of the PSD with a
function 𝐺∶ ℝ2𝑛 × ℝ2𝑛 → ℝ, 𝐻𝑐 = 𝐻𝐺 with

𝐻𝐺[Ψ](𝑡, 𝑧) = (𝐺 ∗ Ψ)(𝑡, 𝑧) (15)

≡ ∫
ℝ2𝑛 𝐺(𝑧, 𝑧′) Ψ(𝑡, 𝑧′) d𝑧′. (16)

By construction, the collective dependence of this type of
Hamiltonian is linear so that the previous considerations are
applicable. Now we want to investigate for which choice of
𝐺 and 𝐻0 Eqs. (13) and (14) hold.

Plugging in 𝐻𝐺, the left hand side of Eq. (13) yields

𝐻𝐺 [{𝐻𝐺[Ψ], Ψ}] = ∫
ℝ2𝑛 𝐺(𝑧, 𝑧′)

{∫
ℝ2𝑛 𝐺(𝑧′, 𝑧″)Ψ(𝑡, 𝑧″) d𝑧″, Ψ(𝑡, 𝑧′)}

𝑧′
d𝑧′,

(17)

where the notation {⋅, ⋅}𝑧′ indicates that the Poisson bracket
acts on the coordinates 𝑧′. Consequently the 𝑧″-convolution,
as well as Ψ(𝑡, 𝑧″) can be taken out of the Poisson bracket

𝐻𝐺 [{𝐻𝐺[Ψ], Ψ}] = ∫
ℝ2𝑛 ∫

ℝ2𝑛

Ψ(𝑡, 𝑧″) 𝐺(𝑧, 𝑧′) {𝐺(𝑧′, 𝑧″), Ψ(𝑡, 𝑧′)}𝑧′ d𝑧′ d𝑧″.
(18)

Using an identity for expressions of the form ∫ℝ2𝑛 {𝑢, 𝑣} 𝑤 d𝑧,
shown in the appendix, see Eq. (40), we get

𝐻𝐺 [{𝐻𝐺[Ψ], Ψ}] = ∫
ℝ2𝑛 ∫

ℝ2𝑛

Ψ(𝑡, 𝑧″) Ψ(𝑡, 𝑧′) {𝐺(𝑧, 𝑧′), 𝐺(𝑧′, 𝑧″)}𝑧′ d𝑧′ d𝑧″,
(19)

and therefore

{𝐺(𝑥, 𝑧), 𝐺(𝑧, 𝑦)} = 0 ∀𝑥, 𝑦 ∈ ℝ2𝑛

⟹ 𝐻𝐺 [{𝐻𝐺[Ψ], Ψ}] = 0 ∀Ψ.
(20)

Turning to Eq. (14) we analogously see that

𝐻𝐺 [{𝐻0, Ψ}]

= ∫
ℝ2𝑛 𝐺(𝑧, 𝑧′) {𝐻0, Ψ(𝑡, 𝑧′)}𝑧′ d𝑧′ (21)

= ∫
ℝ2𝑛 Ψ(𝑡, 𝑧′) {𝐺(𝑧, 𝑧′), 𝐻0}𝑧′ d𝑧′ (22)

so that

{𝐺(𝑥, 𝑧), 𝐻0} = 0 ∀𝑥 ∈ ℝ2𝑛

⟹ 𝐻𝐺 [{𝐻0, Ψ}] = 0 ∀Ψ.
(23)

Example 1: Consider 𝐺(𝑥, 𝑧) = 𝑓 (𝑥)𝑓 (𝑧), with 𝑓 ∶
ℝ2𝑛 → ℝ. Equation (20) holds due to the anti-symmetry of
the Poisson bracket

{𝐺(𝑥, 𝑧), 𝐺(𝑧, 𝑦)} = 𝑓 (𝑥) 𝑓 (𝑦) {𝑓 (𝑧), 𝑓 (𝑧)} = 0. (24)

Looking at the Hamiltonian, it becomes clear why it is self-
preserving

𝐻𝐺[Ψ] = 𝑓 (𝑧) ∫
ℝ2𝑛 𝑓 (𝑧′) Ψ(𝑡, 𝑧′) d𝑧′ (25)

= 𝑓 (𝑧) 𝐸Ψ[𝑓 ]. (26)

As the expected value 𝐸Ψ[𝑓 ] is merely a global factor, the
PSD will evolve along the level-sets of 𝑓 (𝑧), which in turn
however preserves the expected value.

Concerning the non-collective part, we see from Eq. (23)
that 𝐻0 can be any function for which the Poisson bracket
with 𝑓 vanishes

{𝐺(𝑥, 𝑧), 𝐻0} = 𝑓 (𝑥) {𝑓 (𝑧), 𝐻0} . (27)
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Example 2: Consider 𝐺(𝑥, 𝑧) = 𝑓 (𝑀(𝑥), 𝑀(𝑧)), with
𝑀∶ ℝ2𝑛 → ℝ𝑚 and 𝑓∶ ℝ𝑚 × ℝ𝑚 → ℝ, 𝑚 ∈ ℕ In this case
we see that

{𝐺(𝑥, 𝑧), 𝐺(𝑧, 𝑦)} =
(∇2𝑓 )TD𝑀(𝑧)𝐽(D𝑀(𝑧))T∇1𝑓 ,

(28)

where D𝑀 is the Jacobi matrix of 𝑀 and ∇1𝑓 and ∇2𝑓 denote
the gradient of 𝑓 with respect to its first and second argument,
respectively. Hence, we see that the self-conservation condi-
tion holds for any 𝑓, if the term involving the Jacobi matrices
vanishes

D𝑀(𝑧)𝐽(D𝑀(𝑧))T = 0 ∀𝑧 ∈ ℝ2𝑛

⟹ 𝐻𝐺 [{𝐻𝐺[Ψ], Ψ}] = 0 ∀Ψ.
(29)

We note that for 𝑛 = 1, 𝑚 = 2 this condition is equivalent to
det(D𝑀) = 0.

Similarly, we see for the non-collective part

{𝐺(𝑥, 𝑧), 𝐻0} = (∇2𝑓 )TD𝑀(𝑧)𝐽∇𝐻0 (30)

so that the self-consistency condition, see Eq. (23), is ful-
filled if the gradient of the non-collective Hamiltonian is
locally contained in the kernel of D𝑀(𝑧)𝐽

∇𝐻0 ∈ ker(D𝑀(𝑧)𝐽) ∀𝑧 ∈ ℝ2𝑛

⟹ 𝐻𝐺 [{𝐻0, Ψ}] = 0 ∀Ψ.
(31)

Poisson Kick Hamiltonians
A prominent example which is relevant in the dynamics

of charged particle beams – for instance in the study of
microbunching gain induced by longitudinal space-charge
in ultra relativistic linacs with bunch compression chicanes
– are Poisson-kick Hamiltonians [3–6] . Here, the collective
part of the Hamiltonian depends linearly on the PSD via an
interaction potential 𝜑, which is a function of the canonical
coordinates 𝑞 = (𝑧1, … , 𝑧𝑛) and is given as a solution of an
inhomogeneous Poisson equation, where the source term is
the spatial density, i.e. the projection of the PSD along the
conjugate momenta 𝑝 = (𝑧𝑛+1, … , 𝑧2𝑛) ,

∇2
𝑞𝜑(𝑞) = ∫

ℝ𝑛 Ψ(𝑞, 𝑝′) d𝑝′. (32)

The solution to Poisson’s equation can be constructed as a
convolution of the source term with an appropriate kernel 𝐾
so that

𝐻𝐾[Ψ](𝑞, 𝑝) = ∫
ℝ𝑛 ∫

ℝ𝑛 𝐾(𝑞, 𝑞′) Ψ(𝑞′, 𝑝′) d𝑝′ d𝑞′. (33)

By introducing the matrix 𝑄 ∈ ℝ2𝑛×𝑛 which maps a phase-
space vector to the canonical variables 𝑄 = (𝐼𝑛 0𝑛), we
can see the that findings of the above example are indeed
applicable to this Hamiltonian, as we can write

𝐻𝐾[Ψ](𝑧) = ∫
ℝ2𝑛 𝐾(𝑄 𝑧, 𝑄 𝑧′) Ψ(𝑧′) d𝑧′ (34)

By defining 𝑞 and 𝑝 in this way we have implicitly chosen
a base for the phase space 𝑧 = (𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛), in
which 𝐽 takes the form

𝐽 = ( 0 −𝐼𝑛
𝐼𝑛 0 ) (35)

With this we see from Eq. (29) that Poisson Kick Hamiltoni-
ans are indeed self-preserving

𝑄 𝐽 𝑄T = (𝐼𝑛 0𝑛) ( 0 −𝐼𝑛
𝐼𝑛 0 ) (𝐼𝑛

0𝑛
) = 0. (36)

Noting that ker(𝑄𝐽) = ℝ𝑛 × {0}𝑛 it becomes apparent
from Eq. (31), that any single-particle Hamiltonian 𝐻0
that does not depend on 𝑝 will keep the total Hamiltonian
𝐻[Ψ] = 𝐻𝐾[Ψ] + 𝐻0 self-preserving.

The fact that Poisson-kicks are self-preserving has already
been implicetely used by Cheng to develop an efficient oper-
ator splitting scheme for the Vlasov-Poisson equation [7].

SUMMARY & OUTLOOK
In this contribution we proposed an expansion procedure

for the Vlasov equation and showed that it is possible to
extract a class of linearly collective, self-preserving Hamil-
tonians from the first iteration this expansion. As already
hinted, one possible way forward is to truncate the expansion
at some order and suppress any remaining Ψ dependencies.
The resulting Liouville equation can then be solved exactly
via the method of characteristics and one might be able to
estimate the error bounds resulting from that truncation.

APPENDIX
Let 𝑢 ∈ 𝐶1(ℝ2𝑛, ℝ) be compactly supported and 𝑣 ∈

𝐶2(ℝ2𝑛, ℝ) , then by integration by parts

∫
ℝ2𝑛 {𝑢, 𝑣} d𝑧 =

2𝑛
∑

𝑖,𝑗=1
𝐽𝑖𝑗 ∫

ℝ2𝑛

𝜕𝑢
𝜕𝑧𝑖

𝜕𝑣
𝜕𝑧𝑗

d𝑧 (37)

= −
2𝑛
∑

𝑖,𝑗=1
𝐽𝑖𝑗 ∫

ℝ2𝑛 𝑢 𝜕2𝑣
𝜕𝑧𝑖𝜕𝑧𝑗

d𝑧 = 0, (38)

where the last equality is by the anti-symmetry of 𝐽𝑖𝑗.
Let additionally 𝑤 ∈ 𝐶2(ℝ2𝑛, ℝ). As the Poisson bracket

obeys the Leibnitz rule, we see that

∫
ℝ2𝑛 {𝑢, 𝑣} 𝑤 d𝑧 = ∫

ℝ2𝑛 {𝑢, 𝑣 𝑤} − {𝑢, 𝑤} 𝑣 d𝑧 (39)

= ∫
ℝ2𝑛 {𝑤, 𝑢} 𝑣 d𝑧, (40)

where in the last equality we have used the previous result,
Eq. (38), and the antisymmetry of the Poisson bracket.
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