Author: Thangaraj, J.C.T.
Paper Title Page
TUPAB098 Recent Progress Toward a Conduction-Cooled Superconducting Radiofrequency Electron Gun 1604
 
  • O. Mohsen, N. Adams, V. Korampally, A. McKeown, D. Mihalcea, P. Piot, I. Salehinia, N. Tom
    Northern Illinois University, DeKalb, USA
  • R. Dhuley, M.G. Geelhoed, D. Mihalcea, J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
  • P. Piot
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the US Department of Energy (DOE) under contract DE-SC0018367
High-repetition-rate electron sources have widespread applications. This contribution discusses the progress toward a proof-of-principle demonstration for a conduction-cooled electron source. The source consists of a simple modification of an elliptical cavity that enhances the field electric field at the photocathode surface. The source was cooled to cryogenic temperatures and preliminary measurements for the quality factor and accelerating field were performed. Additionally, we present future plans to improve the source along with simulated beam-dynamics performances.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB098  
About • paper received ※ 29 May 2021       paper accepted ※ 17 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB156 Built-in Thermionic Electron Source for an SRF Linacs 4062
 
  • I.V. Gonin, S. Kazakov, R.D. Kephart, T.N. Khabiboulline, T.H. Nicol, N. Solyak, J.C.T. Thangaraj, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  The design of a thermionic electron source connected directly to a superconducting cavity, the key part of an SRF gun, is described. The results of beam dynamics optimization are presented which allow lack of beam current intercepting in the superconducting cavity. The electron source concept is presented including the cathode-grid assembly, thermal insulation of the cathode from the cavity, and the gun resonator design. The cavity thermal load caused by the gun is analyzed including the static heat load, black body radiation, backward electron heating, etc.  
poster icon Poster THPAB156 [0.670 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB156  
About • paper received ※ 19 May 2021       paper accepted ※ 12 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)