Paper | Title | Page |
---|---|---|
TUPAB405 | Design of High Energy Linac for Generation of Isotopes for Medical Applications | 2472 |
|
||
Funding: Ministry of Electronics and Information Technology (MeitY), Govt. of India. After successful implementation of 6 and 15 MeV electron linear accelerator (linac) technology for Cancer Therapy in India, we initiated the development of high energy high current accelerator for the production of radioisotopes for diagnostic applications. The accelerator will be of 30 MeV energy with 350 µA average current provided by a gridded gun. The linac is a side coupled standing wave accelerator operating at 2998 MHz frequency operating at p/2 mode. The choice of p/2 operating mode is particularly suitable for this case where the repetition rate will be around 400 Hz. Klystron with 7 MW peak power and 36 kW average power will be used as the RF source. The modulator will be a solid-state modulator. The control system is FPGA based setup developed in-house at SAMEER. A retractable target with tungsten will be used as a converter to generate X-rays via bremsstrahlung. The x-rays will then interact with enriched 100Mo target to produce 99Mo via (g, n) reaction. Eluted 99mTc will be used for diagnostic applications. The paper lists the challenges and novel schemes developed at SAMEER to make a compact, rugged, and easy to use system keeping in mind local conditions. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB405 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 23 June 2021 issue date ※ 02 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB209 | Review of Medical Accelerator Development at Sameer, India | 3113 |
|
||
Funding: Ministry of Electronics and Information Technology (MeitY), Government of India At the Medical Electronics Division of SAMEER, R&D for the development of a 4 MeV energy electron linac for Cancer therapy was taken up in the late ’80s. An S-band standing wave side coupled structure operating at pi/2 mode was developed for electron acceleration. The linac was integrated with other subsystems in collaboration with CSIO and PGIMER and the first machine was commissioned at PGI, Chandigarh in 1990. Thereafter, a lot of modifications like energy, dose rate, iso-center height etc. were made in the system, and later 4 more machines were commissioned in hospitals for treatment. More than 1,50,000 patients have been treated using SAMEER’s 6 MeV oncology system. Subsequently, development of dual-mode and variable energy electron and photon output machines was undertaken. Two-photon energies of 6 and 15 MV and multiple electron energies starting from 6 to 18 MeV for treatment was offered from the linac. The electron energy variation was done using plunger mechanism in the side coupling cavity. This linac was successfully baked and RF tested for various parameters. This paper describes the experimental parameters achieved for both low and high energy dual-mode linac. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB209 | |
About • | paper received ※ 14 May 2021 paper accepted ※ 07 July 2021 issue date ※ 13 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |