Author: Tantawi, S.G.
Paper Title Page
MOXB03
Copper Based Radio Frequency Structures: Are We at the End of Road for This Technology?  
 
  • S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.
We will present an overview of recent advances in high gradient copper structures operating at room temperature and at cryogenic temperature. We will include the advances that enabled us to understand better the underlying fundamental physics that govern the breakdown phenomena in high field vacuum structures. We will then present the recent advances in linac topologies that take advantage of this basic understanding of the breakdown phenomena. We will also showcase how these advances are being utilized for many different medical, industrial, and discovery machines. Our presentation will not be limited to electron accelerators but will also include advances for high gradient hadron linacs.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB341 First C-Band High Gradient Cavity Testing Results at LANL 1057
 
  • E.I. Simakov, R.L. Fleming, D. Gorelov, T.A. Jankowski, M.F. Kirshner, J.W. Lewellen, J.D. Pizzolatto, M.E. Schneider, T. Tajima
    LANL, Los Alamos, New Mexico, USA
  • X. Lu, E.A. Nanni, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • M.E. Middendorf
    ANL, Lemont, Illinois, USA
 
  Funding: Los Alamos National Laboratory LDRD Program.
This poster will report the results of high gradient testing of the two proton β=0.5 C-band accelerating cavities. The cavities for proton acceleration were fabricated at SLAC and tested at high gradient C-band accelerator test stand at LANL. One cavity was made of copper, and the second was made of a copper-silver alloy. LANL test stand was constructed around a 50 MW, 5.712 GHz Canon klystron and is capable to provide power for conditioning single cell accelerating cavities for operation at surface electric fields up to 300 MV/m. These β=0.5 C-band cavities were the first two cavities tested on LANL C-band test stand. The presentation will report achieved gradients, breakdown probabilities, and other characteristics measured during the high power operation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB341  
About • paper received ※ 19 May 2021       paper accepted ※ 25 May 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXB04 Fabrication and Tuning of a THz-Driven Electron Gun 1297
 
  • S.M. Lewis, A.A. Haase, J.W. Merrick, E.A. Nanni, M.A.K. Othman, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • S.M. Lewis
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the Department of Energy Contract No. DE-AC02-76SF00515 (SLAC) and by NSF Grant No. PHY-1734015.
We have developed a THz-driven field emission electron gun and beam characterization assembly. The two cell standing-wave gun operates in the pi mode at 110.08 GHz. It is designed to produce 360 keV electrons with 500 kW of input power supplied by a 110 GHz gyrotron. Multiple gun structures were electroformed in copper using a high precision diamond-turned mandrel. The field emission cathode is a rounded copper tip located in the first cell. The cavity resonances were mechanically tuned using azimuthal compression. This work will discuss details of the fabrication and tuning and present the results of low power measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUXB04  
About • paper received ※ 18 May 2021       paper accepted ※ 22 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB051 Beam Dynamics for a High Field C-Band Hybrid Photoinjector 2714
 
  • L. Faillace, F. Bosco, M. Carillo, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • R.B. Agustsson, I.I. Gadjev, S.V. Kutsaev, A.Y. Murokh
    RadiaBeam, Santa Monica, California, USA
  • M. Behtouei, A. Giribono, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • A. Fukasawa, N. Majernik, J.B. Rosenzweig, O. Williams
    UCLA, Los Angeles, California, USA
  • S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work supported by DARPA GRIT under contract no. 20204571 and partially by INFN National Committee V through the ARYA project.
In this paper, we present a new class of a hybrid photoinjector in C-Band. This project is the effort result of a UCLA/Sapienza/INFN-LNF/SLAC/RadiaBeam collaboration. This device is an integrated structure consisting of an initial standing-wave 2.5-cell gun connected to a traveling-wave section at the input coupler. Such a scheme nearly avoids power reflection back to the klystron, removing the need for a high-power circulator. It also introduces strong velocity bunching due to a 90° phase shift in the accelerating field. A relatively high cathode electric field of 120 MV/m produces a ~4 MeV beam with ~20 MW input RF power in a small foot-print. The beam transverse dynamics are controlled with a ~0.27 T focusing solenoid. We show the simulation results of the RF/magnetic design and the optimized beam dynamics that shows 6D phase space compensation at 250 pC. Proper beam shaping at the cathode yields a ~0.5 mm-mrad transverse emittance. A beam waist occurs simultaneously with a longitudinal focus of <400 fs rms and peak current >600 A. We discuss application of this injector to an Inverse-Compton Scattering system and present corresponding start-to-end beam dynamics simulations.
 
poster icon Poster WEPAB051 [0.827 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB051  
About • paper received ※ 18 May 2021       paper accepted ※ 01 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB056 Advanced Photoinjector Development at the UCLA SAMURAI Laboratory 2728
 
  • A. Fukasawa, G. Andonian, O. Camacho, C.E. Hansel, G.E. Lawler, W.J. Lynn, N. Majernik, P. Manwani, B. Naranjo, J.B. Rosenzweig, Y. Sakai, O. Williams
    UCLA, Los Angeles, California, USA
  • Z. Li, R. Robles, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • J.I. Mann
    PBPL, Los Angeles, USA
  • M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work was supported by the US Department of Energy under the contract No. DE-SC0017648, DE-SC0009914, and DE-SC0020409, and by National Science Foundation Grant No. PHY-1549132
UCLA has recently constructed SAMURAI, a new radiation bunker and laser infrastructure for advanced accelerator research. In its first phase, we will build a 30 MeV photoinjector with an S-band hybrid gun. The beam dynamics simulation for this beamline showed the generation of the beam with the emittance 2.4 um and the peak current 270 A. FIR-FEL experiments are planned in this beamline. The saturation peak power was expected at 170 MW.
 
poster icon Poster WEPAB056 [0.939 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB056  
About • paper received ※ 28 May 2021       paper accepted ※ 01 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB110 Solid-State Driven X-Band Linac for Electron Microscopy 2853
 
  • A. Dhar, E.A. Nanni, M.A.K. Othman, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the Department of Energy Contract No. DE-AC02-76SF00515.
Microcrystal electron diffraction (MicroED) is a technique used by scientists to image molecular crystals with cryo-electron microscopy (cryo-EM)*. However, cryo-EMs remain expensive, limiting MicroED’s accessibility. Current cryo-EMs accelerate electrons to 200-300 keV using DC electron guns with a nA of current and low emittance. However at higher voltages these DC guns rapidly grow in size. Replacing these electron guns with a compact linac powered by solid-state sources could lower cost while maintaining beam quality, thereby increasing accessibility. Utilizing compact high shunt impedance X-band structures ensures that each RF cycle contains at most a few electrons, preserving beam coherence. CW operation of the RF linac is possible with distributed solid-state architectures** that use 100W solid-state amplifiers at X-band frequencies. We present an initial design for a prototype low-cost CW RF linac for high-throughput MicroED producing 200 keV electrons with a standing-wave architecture where each cell is individually powered by a solid-state amplifier. This design also provides an upgrade path for future compact MeV-scale sources on the order of 1 meter in size.
* Jones, C. G. et al. ACS central science 4, 1587-1592 (2018).
** D. C. Nguyen et al, Proc. 9th International Particle Accelerator Conference (IPAC’18), no. 9, pp. 520-523
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB110  
About • paper received ※ 19 May 2021       paper accepted ※ 24 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB148 RF Design of an X-Band TM02 Mode Cavity for Field Emitter Testing 2961
 
  • Z. Li, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • S.V. Baryshev, T. Posos, M.E. Schneider
    Michigan State University, East Lansing, Michigan, USA
 
  Funding: Work at SLAC was supported by DOE under contract No. DE-AC02-76SF00515. Work at MSU was supported by DOE under Award No. DE-SC0020429 and under Cooperative Agreement Award No. DE-SC0018362.
Planar polycrystalline synthetic diamond with nitrogen-doping/incorporation was found to be a remarkable field emitter. It is capable of generating a high charge beam and handling moderate vacuum conditions. Integrating it with an efficient RF cavity could therefore provide a compact electron source for RF injectors. Understanding the performance metrics of the emitter in RF fields is essential toward developing such a device. We investigated a test setup of the field emitter at the X-band frequency. The setup included an X-band cavity operating at the TM02 mode. The field emitter material will be plated on the tip of a insertion rod on the cavity back plate. Part of the back plate and the emitter rod are demountable, allowing for exchange of the field emitters. The TM02 mode was chosen such that the design of the demountable back plate does not induce field enhancement at the installation gap. The cavity were optimized to achieve a high surface field at the emitter tip and a maximum energy gain of the emitted electrons at a given input power. We will present the RF and mechanical design of such a TM02 X-band cavity for field emitter testing.
 
poster icon Poster WEPAB148 [1.642 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB148  
About • paper received ※ 14 May 2021       paper accepted ※ 12 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB170 RF Deflector Design for Rapid Proton Therapy 4086
 
  • E.J.C. Snively, G.B. Bowden, V.A. Dolgashev, Z. Li, E.A. Nanni, D.T. Palmer, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by US Department of Energy Contract No. DE-AC02-76SF00515.
Pencil beam scanning of charged particle beams is a key technology enabling high dose rate cancer therapy. The potential benefits of high-speed dose delivery include not only a reduction in total treatment time and improvements to motion management during treatment but also the possibility of enhanced healthy tissue sparing through the FLASH effect, a promising new treatment modality. We present here the design of an RF deflector operating at 2.856 GHz for the rapid steering of 150 MeV proton beams. The design utilizes a TE11-like mode supported by two posts protruding into a pillbox geometry to form an RF dipole. This configuration provides a significant enhancement to the efficiency of the structure, characterized by a transverse shunt impedance of 68 MOhm/m, as compared to a conventional TM11 deflector. We discuss simulations of the structure performance for several operating configurations including the addition of a permanent magnet quadrupole to amplify the RF-driven deflection. In addition to simulation studies, we will present preliminary results from a 3-cell prototype fabricated using four copper slabs to accommodate the non-axially symmetric cell geometry.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB170  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)