Author: Shinozaki, S.
Paper Title Page
WEPAB297 A Recent Upgrade on Phase Drift Compensation System for a Stable Beam Injection at J-PARC Linac 3357
 
  • E. Cicek, Z. Fang, Y. Fukui, K. Futatsukawa
    KEK, Ibaraki, Japan
  • T. Hirane, S. Shinozaki
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Sato
    Nippon Advanced Technology Co., Ltd., Tokai, Japan
 
  J-PARC linac, consisting of 324 MHz and 972 MHz acceleration sections, delivers H beam to the rapid cycling synchrotron (RCS). The drift in the beam injection momentum from linac to RCS was measured to be highly dependent on the humidity at the klystron gallery. Also, changes in both temperature and humidity strongly affect the rf field phase controlled within the digital feedback (DFB) system. To cope with this, a unique phase drift compensation system, namely the phase drift monitor (PDM) system, is implemented in the MEBT2B1 station as the first step at the linac. However, the compensation of the drift correction could not be achieved directly since two different frequencies were used. The new PDM, which adapts the direct sampling method using the Radio Frequency System-on-Chip (RFSoC), will pave the way to ensure rf phase stability at all stations simultaneously. Here we present the effects of temperature and humidity on the rf field phase, along with performance and preliminary test results concerning the phase drift compensation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB297  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)