Author: Sato, M.
Paper Title Page
WEPAB405 Supercontinuum Generation for the Improvement of Pulse Radiolysis System 3657
 
  • M. Sato, Y. Kaneko, Y. Koshiba, M. Washio
    RISE, Tokyo, Japan
  • K. Sakaue
    The University of Tokyo, Graduate School of Engineering, Bunkyo, Japan
 
  Pulse radiolysis is one of the absorption measurement methods for investigating the fundamental, ultrafast process of radiation chemical reactions. Analytical light is transmitted simultaneously with the timing of electron beam irradiation, and its absorption by reactive species is detected. Since the target reactions arise in pico second time scale or even shorter, analytical light is required to have such duration. Besides, so as not to be buried in noise of the radiation source, the optical power of the analytical light must be high enough. Furthermore, it is desirable that the analytical light covers visible region because important absorptions caused by irradiation products such as hydrated electron, hydroxyl radical, or so exist in the region. We considered that the supercontinuum light generated from an ultrashort pulse laser is suitable as an analytical light because it has all these characteristics. In this study, we generate the second harmonic (775 nm) of an erbium fiber laser (1550 nm) as a seed laser for supercontinuum generation. In this presentation, we report the current situation of our laser system and prospects.  
poster icon Poster WEPAB405 [0.734 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB405  
About • paper received ※ 18 May 2021       paper accepted ※ 01 September 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)