Author: Sapinski, M.
Paper Title Page
MOPAB413 The Next Ion Medical Machine Study at CERN: Towards a Next Generation Cancer Research and Therapy Facility with Ion Beams 1240
 
  • M. Vretenar, V. Bencini, E. Benedetto, M.R. Khalvati, A.M. Lombardi, M. Sapinski, D. Tommasini
    CERN, Geneva, Switzerland
  • E. Benedetto, M. Sapinski
    TERA, Novara, Italy
  • P. Foka
    GSI, Darmstadt, Germany
 
  Cancer therapy with ions has several advantages over X-ray and proton therapy, but its diffusion remains limited primarily because of the size and cost of the accelerator. To develop technologies that might improve performance and reduce accelerator cost with respect to present facilities, CERN has recently launched the Next Ion Medical Machine Study (NIMMS), leveraging CERN expertise in accelerator fields to disseminate technologies developed for basic science. A perspective user and key partner of NIMMS is the SEEIIST (South East European International Institute for Sustainable Technologies), established to build in the region an innovative facility for combined cancer therapy and biomedical research with ion beams. For SEEIIST and other potential users, three options are being considered. Conceptual designs of a warm-magnet synchrotron at high beam intensity, of a compact superconducting synchrotron, and of a high-frequency linear accelerator have been compared in terms of cost, risk and development time. The development of curved superconducting magnets, of compact synchrotrons and ion gantries, and of linacs is being pursued within EU-funded projects or specific collaborations  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB413  
About • paper received ※ 18 May 2021       paper accepted ※ 20 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB414 A Novel Facility for Cancer Therapy and Biomedical Research with Heavy Ions for the South East European International Institute for Sustainable Technologies 1244
 
  • S. Damjanovic, P. Grübling, H. Schopper
    SEEIIST, Geneva, Switzerland
  • U. Amaldi, E. Benedetto, M. Sapinski
    TERA, Novara, Italy
  • E. Benedetto, G. Bisoffi, M. Dosanjh, M. Sapinski, M. Vretenar
    CERN, Meyrin, Switzerland
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • S. Damjanovic, M. Durante, P. Foka, C. Graeff
    GSI, Darmstadt, Germany
  • Th. Haberer
    HIT, Heidelberg, Germany
  • S. Rossi
    CNAO Foundation, Milan, Italy
  • H.J. Specht
    Universität Heidelberg, Heidelberg, Germany
 
  The South East European International Institute for Sustainable Technologies (SEEIIST) proposes the construction of a major joint Research Infrastructure in the region, to rebuild cooperation after the recent wars and overcome lasting consequences like technology deficits and brain drain, having at its core a facility for cancer therapy and biomedical research with heavy ions. Beams of ions like Carbon are an advanced way to irradiate tumours but more research is needed, while the higher investment costs than for other radiation treatments have so far limited the European facilities to only four. This initiative aims at being strongly innovative, beyond the existing European designs. While the initial baseline relies on a conservative warm-magnet synchrotron, superconducting magnets for an advanced version of the synchrotron and for the gantry are being developed, with a potential for reductions in size, cost, and power consumption. Both warm and superconducting designs feature high beam intensity for faster treatment, and flexible extraction for novel treatment methods. A novel injector linac has the potential for producing radioisotopes in parallel with synchrotron injection.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB414  
About • paper received ※ 17 May 2021       paper accepted ※ 06 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB402 Review of Technologies for Ion Therapy Accelerators 2465
 
  • H.X.Q. Norman, R.B. Appleby, A.F. Steinberg
    UMAN, Manchester, United Kingdom
  • E. Benedetto
    TERA, Novara, Italy
  • E. Benedetto, M. Sapinski
    CERN, Meyrin, Switzerland
  • H.L. Owen
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.L. Owen
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Sapinski
    GSI, Darmstadt, Germany
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Cancer therapy using protons and heavier ions such as carbon has demonstrated advantages over other radiotherapy treatments. To bring about the next generation of clinical facilities, the requirements are likely to reduce the footprint, obtain beam intensities above 1E10 particles per spill, and achieve faster extraction for more rapid, flexible treatment. This review follows the technical development of ion therapy, discussing how machine parameters have evolved, as well as trends emerging in technologies for novel treatments such as FLASH. To conclude, the future prospects of ion therapy accelerators are evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB402  
About • paper received ※ 19 May 2021       paper accepted ※ 28 July 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)