Author: Rodin, V.
Paper Title Page
MOPAB267 End to End Simulations of Antiproton Transport and Degradation 847
 
  • S. Padden, E. Kukstas, P. Pusa, V. Rodin, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • K. Nordlund
    HIP, University of Helsinki, Finland
  • V. Rodin, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The ELENA ring decelerates anti-protons to 100 keV down from 5.3 MeV with transport to experiments handled by electrostatic transfer lines. Even at 100 keV antiprotons are still too high in energy for direct injection into an ion trap, and this is why degrader foils are used to further lower the energy. This contribution presents full end-to-end simulations from the point of extraction until passing through the foil using realistic beam transport simulations coupled with accurate simulations of degrader foils via the use of density functional theory and molecular dynamics. Particles are tracked from the point of extraction until their injection into the trap with full physical modeling at all time steps. The results of this study provide a versatile platform for the optimization of low energy ion experiments towards specific targets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB267  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB180 Design and Beam Dynamics Studies of a Novel Compact Recoil Separator Ring for Nuclear Research with Radioactive Beams 3031
 
  • J. Resta-López
    UVEG, Burjasot (Valencia), Spain
  • A.P. Foussat, G. Kirby
    CERN, Geneva, Switzerland
  • I. Martel
    University of Huelva, Huelva, Spain
  • V. Rodin
    The University of Liverpool, Liverpool, United Kingdom
  • V. Rodin
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by the Generalitat Valenciana under grant agreement CIDEGENT/2019/058
The recent development of radioactive beam facilities has significantly expanded the capabilities for investigating the structure of the atomic nucleus and the nuclear interaction. For instance, the HIE-ISOLDE facility at CERN delivers presently the largest range of low-energy radioactive beam available worldwide. This energy range is ideal for the study of nuclear structure, low-energy dynamics and astrophysics by using nucleon transfer, Coulomb excitation and deep inelastic reactions. All these studies require an efficient and high-resolution recoil separator for the clear identification of medium and large mass reaction fragments. To meet these needs, we propose a versatile recoil separator for radioisotopes based on a compact storage ring, the Isolde Superconducting Recoil Separator (ISRS) formed of superconducting combined-function nested magnets with both, bending and focusing/defocusing functions. The ISRS is designed to operate in high momentum acceptance and isochronous modes. In this paper, we present the optics design and detailed beam dynamics studies for the performance characterisation.
 
poster icon Poster WEPAB180 [3.619 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB180  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB213 Optimization of Antiproton-Atom Collision Studies Using GEANT4 3126
 
  • V. Rodin, A. Farricker, N. Kumar, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • N. Kumar, V. Rodin, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721559.
The interaction between antiprotons and hydrogen or helium atoms is a fundamental problem in many-particle atomic physics, attracting strong interest from both theory and experiments. Atomic collisions are ideal to study the three and four-body Coulomb problem as the number of possible reaction channels is limited. Currently, only the total cross-sections of such interactions have been measured in an energy range between keV and a few MeV. This contribution investigates the discrepancies between different theories and available experimental data. It also describes a pathway for obtaining differential cross-sections. A purpose-designed experimental setup is presented and detailed Geant4 simulations provide an insight into the interaction between short (ns) antiproton bunches and a dense gas-jet target.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB213  
About • paper received ※ 23 May 2021       paper accepted ※ 30 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB214 Realistic Simulations of Stray Field Impact on Low Energy Transfer Lines 3130
 
  • V. Rodin, S. Padden, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A. Farricker, S. Padden, V. Rodin, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • J. Resta-López
    UVEG, Burjasot (Valencia), Spain
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721559.
Low energy (~100 keV) facilities working with antiprotons, heavy ions, or charged molecules may experience severe beam transport instabilities caused by field imperfections. For example, long (~10 m), unshielded beamlines will not be able to transfer particles due to the natural Earth magnetic field or stray fields from closely located experiments. Currently, only a limited number of simulation codes allow a simplified representation of such field errors, limiting capabilities for beam delivery optimization. In this contribution, a new simulation approach is presented that can provide detailed insight into 4D beam transport. It illustrates the impact of imperfections and stray fields on beam stability and quality through simulations of two antiproton experiments located in the Antimatter Factory (AD) at CERN in Geneva, Switzerland. Magnetic field imperfections are examined in two different ways, providing greater flexibility and an opportunity to benchmark all outcomes. Simulation performance is analyzed as a function of the level of detail and efficiency.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB214  
About • paper received ※ 19 May 2021       paper accepted ※ 12 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB215 Simulation of Intra-Beam Scattering in PyHEADTAIL 3134
 
  • V. Rodin, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • A. Oeftiger
    GSI, Darmstadt, Germany
  • V. Rodin, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 721559
High-intensity beams in low-energy synchrotrons are subject to space charge as well as intra-beam scattering (IBS). Accurate modelling of both effects becomes essential when the transverse emittances and minimum bunch length are determined through heating processes and resonances induced by machine errors. To date, only very few tools available to the general public allow to simultaneously study space charge and IBS in self-consistent simulations. In this contribution, we present our recent development of an IBS module for PyHEADTAIL, an open-source 6D multi-particle tracking tool, which already includes various 2.5D and 3D space-charge models based on the self-consistent particle-in-cell algorithm. A simulation example of high-intensity bunch rotation demonstrates the joint impact of applied heating effects. Our model is based on the Martini and Bjorken-Mitingwa theories. Benchmarks of our implementation against IBS modules provided in the MAD-X and JSPEC codes are shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB215  
About • paper received ※ 23 May 2021       paper accepted ※ 14 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)