

Design and Beam Dynamics Studies of a Novel Compact Recoil Separator Ring for Nuclear Research with Radioactive Beams

Javier Resta-López (ICMUV, University of Valencia, Spain), Arnaud Pascal Foussat, Glyn Kirby (CERN, Geneva, CH), Ismael Martel (University of Huelva, Spain) Volodymyr Rodin (The University of Liverpool, Liverpool; Cockcroft Institute, Warrington, UK)

WEPAB180 IPAC 2021 24 – 28th May, 2021

Introduction

The HIE-ISOLDE facility at CERN

- Very large range of radioactive beams from ⁶He ²³⁴Ra
- 1000 isotopes, > 70 elements
- Wide energy range 0.45 10 MeV/u (depending on A/Q)

A compact recoil separator can bring new and exciting possibilities to the HIE-ISOLDE physics program

The ISOLDE Superconducting Recoil Separator (ISRS) – new initiative since 2019

ISRS conceptual design

Optics layout

- DFD optics for non-scaling FFAG
- Lattice with sbend magnets

Isochronous mode: $\gamma pprox \gamma_t$

_	234_	
Beam	²³ Ra	
Vinatia ananan		
Kinetic energy	10 MeV/u	
Dividity Do[Tm]	2	
Rigidity, $bp[1]$ m	2	
Marine hate for stigner Q [m]	4.0.1.0	
Maximum beta functions, $p_{x,y}$ [m]	4.8, 1.8	
Maximum dispersion D [m]	2.1	
Maximum dispersion, D_x [m]	2.1	
F magnet		
g		
Effective length [m]	0.55	
Dipole field [T]	2.11	
Quadrupole gradient [T/m]	6.046	
D magnet		
Effective length [m]	0 497	
	··· <i>·</i> /	
Dipole field [T]	2.0	
r L - J		
Quadrupole gradient [T/m]	-6.046	

Expected max. momentum acceptance: $\Delta\,p/p\text{=+/-5}\,\%$

WEPAB180, IPAC 2021

Optics layout

- FDF optics for non-scaling FFAG
- Lattice with sbend magnets

High momentum acceptance mode

Beam	²³⁴ Ra
Kinetic energy	10 MeV/u
Rigidity, $B\rho$ [T m]	2
Maximum beta functions, $\beta_{x,y}$ [m]	7.8, 13.5
Maximum dispersion, D_x [m]	0.32
F magnet	
Effective length [m]	0.497
Dipole field [T]	2.0
Quadrupole gradient [T/m]	12.3
D magnet	
Effective length [m]	0.55
Dipole field [T]	2.11
Quadrupole gradient [T/m]	-13.1

Expected max. momentum acceptance: $\Delta p/p=+/-31.25$ %

6 S, [m]

4

0

0

2

0

10

8

Magnets

- Bent CCT nested dipole and quad. magnet
- Synergy with CCT magnets for gantries
- 200 mm beam aperture
- Curvature of 1 m
- 90 deg. bend
- Two layer coil has both 2.2 T dipole and 13 T/m (maximum) quad. in a single conductor pack
- The quad. consists of three sections rotated by +/- 45 deg. to make a FDF (DFD) triplet focusing/defocusing configuration
- Stray field shield that replaces the classic iron yoke

Rat program (thanks to Little Beast Engineering)

Beam dynamics

Dynamic aperture studies for different operation modes

Tracking performed with ²³⁴Ra for 500 turns using the code BMAD

Isochronous mode

High momentum acceptance mode

• Minimum acceptance for negative $\Delta p/p$

Outlook

- A new concept of compact recoil separator is proposed: The Isolde Superconducting Recoil Separator (ISRS)
- It will significantly increase the number of accessible exotic nuclei for critical studies with sufficient precision using the beam intensities and energies available at the HIE-ISOLDE
- Optics layout based on innovative CCT curved magnets (strong synergies with medical gantries); non-scaling FFAG ring
- Versatile optics, different operation modes: isochronous, high momentum acceptance, etc.
- Fine tuning of the magnets and the FFAG optics will provide very large solid angles > 100 msr and momentum acceptances $\Delta p/p > 20\%$.
- Consolidated collaboration for the design, optimization and proof-of-concept of the different subsystems and elements of the ISRS.