Author: Riffaud, B.
Paper Title Page
MOPAB370 X-Band RF Spiral Load Optimization for Additive Manufacturing Mass Production 1143
 
  • H. Bursali
    Sapienza University of Rome, Rome, Italy
  • N. Catalán Lasheras, R.L. Gerard, A. Grudiev, O. Gumenyuk, P. Morales Sanchez, B. Riffaud
    CERN, Geneva, Switzerland
  • J. Sauza-Bedolla
    Lancaster University, Lancaster, United Kingdom
 
  The CLIC main linac uses X-band traveling-wave normal conducting accelerating structures. The RF power not used for beam acceleration nor dissipated in the resistive wall is absorbed in two high power RF loads that should be as compact as possible to minimize the total footprint of the machine. In recent years, CERN has designed, fabricated and successfully tested several loads produced by additive manufacturing. With the current design, only one load can be produced in the 3D printing machine at a time. The aim of this study is optimizing the internal cross-section of loads in order to create a stackable design to increase the number of produced parts per manufacturing cycle and thus decrease the unit price. This paper presents the new design with an optimization of the internal vacuum part of the so-called RF spiral load. In this case, RF and mechanical designs were carried out in parallel. The new cross section has showed good RF reflection reaching less than -30 dB in simulations. The final load is now ready to be manufactured and high-power tested. This new load will not only provide cost saving but also faster manufacturing for mass production.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB370  
About • paper received ※ 18 May 2021       paper accepted ※ 26 May 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB365 CERN BDF Prototype Target Operation, Removal and Autopsy Steps 3559
 
  • R. Franqueira Ximenes, O. Aberle, C. Ahdida, P. Avigni, M. Battistin, L. Bianchi, L.R. Buonocore, S. Burger, J. Busom, M. Calviani, J.P. Canhoto Espadanal, M. Casolino, M. Di Castro, M.A. Fraser, S.S. Gilardoni, S. Girod, J.L. Grenard, D. Grenier, M. Guinchard, R. Jacobsson, M. Lamont, E. Lopez Sola, A. Ortega Rolo, A. Perillo-Marcone, Y. Pira, B. Riffaud, V. Vlachoudis, L. Zuccalli
    CERN, Geneva, Switzerland
 
  The Beam Dump Facility (BDF), currently in the study phase, is a proposed general-purpose fixed target facility at CERN. Initially will host the Search for Hidden Particles (SHiP) experiment, intended to investigate the origin of dark matter and other weakly interacting particles. The BDF particle production target is located at the core of the facility and is employed to fully absorb the high intensity (400 GeV/c) Super Proton Synchrotron (SPS) beam. To validate the design of the production target, a downscaled prototype was tested with the beam at CERN in 2018 in the North Area primary area in a dedicated test at 35 kW average beam power. This contribution details the BDF prototype target operation, fully remote removal intervention, and foreseen post-irradiation examination plans.  
poster icon Poster WEPAB365 [1.691 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB365  
About • paper received ※ 18 May 2021       paper accepted ※ 15 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)