Paper | Title | Page |
---|---|---|
MOPAB099 | Intensity Fluctuations Reduction in the Double-Bunch FEL at LCLS | 369 |
|
||
In this paper we explore the possibility of reducing the intensity fluctuations of a hard X-ray double-bunch free-electron laser (DBFEL) by using an ultra-short, high peak current electron bunch to generate the seed signal, as studied recently for soft X-ray single bunch self-seeding. The ultra-short, nearly single-spike, SASE pulse is amplified to saturation, where a four-crystal monochromator selects a narrow bandwidth seed for the second bunch. Start-to-end simulation results for 7 keV photon energy are presented here for a DBFEL already studied for LCLS using the HXR undulator. We show that using this enhanced DBFEL (EDBFEL) system; the seed signal intensity fluctuations can be reduced from 85% to about 30%, and the second bunch intensity fluctuation at saturation to about 15%. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB099 | |
About • | paper received ※ 24 May 2021 paper accepted ※ 16 July 2021 issue date ※ 31 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB100 | Progress Report on Population Inversion-Based X-Ray Laser Oscillator | 373 |
|
||
The population inversion X-ray Laser Oscillator (XLO) is a fully coherent, transform limited hard X-ray source. It operates by repetitively pumping inner-shell atomic transitions with an XFEL, in a closed Bragg cavity. XLO will produce very bright monochromatic X-ray pulses for applications in quantum optics, X-ray interferometry and metrology. We report the progress to build the first XLO operating at the copper alpha line, using LCLS 9 keV SASE X-ray pulses as a pump. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB100 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 29 July 2021 issue date ※ 02 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB150 | Optimization of the Gain Medium Delivery System for an X-Ray Laser Oscillator | 524 |
|
||
Funding: This work was supported by DE-SC0009914. X-ray laser oscillator, dubbed XLO, is a recently proposed project at SLAC to build the first population inversion X-ray laser. XLO utilizes a train of XFEL SASE pulses to pump atomic core-states. The resulting amplified spontaneous emission radiation is recirculated in a backscattering Bragg cavity and subsequently amplified. XLO could provide fully coherent, transform-limited X-ray pulses with 50 meV bandwidth and 1e10 photons. Currently, XLO is being considered for operation at the copper K-alpha line at 8048 eV. In this work, we focus on the optimization of gain medium delivery in the XLO cavity. We consider a fast, subsonic jet of copper nitrate solution, moving through a cylindrical nozzle. We focus on the nozzle geometry optimization and possible diagnostics of the jet-XFEL interaction point. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB150 | |
About • | paper received ※ 24 May 2021 paper accepted ※ 18 June 2021 issue date ※ 27 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |