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Abstract
In this paper we explore the possibility of reducing the

intensity fluctuations of a hard X-ray double-bunch free-
electron laser (DBFEL) by using an ultra-short, high peak
current electron bunch to generate the seed signal, as stud-
ied recently for soft X-ray single bunch self-seeding. The
ultra-short, nearly single-spike, SASE pulse is amplified to
saturation, where a four-crystal monochromator selects a
narrow bandwidth seed for the second bunch. Start-to-end
simulation results for 7 keV photon energy are presented here
for a DBFEL already studied for LCLS using the HXR undu-
lator. We show that using this enhanced DBFEL (EDBFEL)
system; the seed signal intensity fluctuations can be reduced
from 85% to about 30%, and the second bunch intensity
fluctuation at saturation to about 15%.

INTRODUCTION
The Free-electron laser (FEL) opens the door to a new

frontier of high-intensity X-ray experiments in various re-
search fields, e.g., physics, chemistry [1], life [2] and ma-
terial sciences [3]. Combined with ultra-short duration, re-
fined resolution, and high photon flux, hard X-ray FELs
have become powerful tools to capture simultaneous infor-
mation on atomic structure and dynamics, which have been
exemplified by the successful operation of various X-ray
FEL sources [4–7], as the Linac Coherent Light Source
(LCLS). The process of X-ray generation in these machines
is based on self-amplified spontaneous emission (SASE)
[8], in which the electron beam spontaneous emission is
amplified while the electron beam is traveling through an un-
dulator magnet. The X-rays produced in the SASE process
are transversely coherent. However, due to the stochastic
nature of this process, the longitudinal coherence is limited,
and the X-ray pulse is spiky [9–13].

One efficient way to improve the X-ray temporal proper-
ties is the self-seeding technique, demonstrated experimen-
tally at LCLS [14]. With an inserted transmissive monochro-
mator in the undulator system, the SASE FEL spectrum is
filtered, and a narrow bandwidth wake seed is generated. The
narrow bandwidth seed is amplified in the later undulator
segments. In this way, the self-seeding scheme substantially
improves the FEL spectral brightness.

A further improvement of the spectral brightness can be
obtained with the DBFEL [15–18]. In this scheme, shown
in Fig. 1, the first bunch generates a high power SASE X-ray
pulse in the first undulator section and does not lase in the
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second undulator section. The second bunch does not lase in
the first undulator section and is seeded at the entrance of the
second tapered undulator section by the monochromatized
high power SASE pulse generated by the first bunch. The
frequency filtering occurs in a four crystals monochromator,
also acting as a photon delay line. A fast transverse kicker is
used to put the second bunch in oscillations around the un-
dulator axis in the first section to suppress the lasing process,
while the first bunch is on-axis. A magnetic chicane steers
both electron bunches off the monochromator optics, and, at
the same location, transverse orbit correctors are used to set
the second bunch on-axis in the second undulator tapered
section thus setting also the first bunch on an oscillating
trajectory.
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Figure 1: DBFEL schematics: Two bunches with 0.7 ns
separation are produced in the injector, accelerated, and
compressed in the copper Linac, propagating co-axially to
the HXR undulator sections. At the TEM kicker location,
the second bunch is kicked off-axis, while the first bunch
propagates on-axis, generating a SASE X-ray pulse. The
4-bounce monochromator filters and delays the SASE X-ray
pulse by 0.7 ns. The magnetic chicane steers the electrons
off the monochromator optics creating a small delay of the
electrons (some tens of fs). At the entrance to the second
undulator section, the second bunch trajectory is steered
back to propagate on-axis. This bunch is co-aligned and
temporally overlapped with the filtered and delayed x-ray
pulse that acts as a monochromatic seed, while the first bunch
is kicked off-axis.

However, since self-seeding schemes, e.g., DBFEL, trans-
missive self-seeding [19], reflective self-seeding [20], fresh-
slice self-seeding [21], use a SASE pulse generated in high
gain regime and a monochromator to produce the seed, the
seed power, due to the stochastic nature of SASE, has strong
fluctuation . Hence, the output power amplified from the
seed will inherit the strong fluctuation. To stabilize the out-
put power of self-seeding, a novel scheme has been proposed
to suppress the seed power fluctuation for soft X-rays [22],
using an ultra-short seed signal with a nearly single SASE
spike.
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In this paper, we extend this approach to the hard X-ray
DBFEL studied for LCLS to enhance its output power sta-
bility, using an ultra-short electron bunch to generate the
seed. We call this approach enhanced DBFEL, EDBFEL. We
present simulation results at 7 keV using the LCLS-II HXR
undulator. The simulation results of DBFEL and EDBFEL
show that the EDBFEL scheme can significantly suppress
the intensity fluctuations of the seed signal power and the
saturation power.

SIMULATIONS
DBFEL at 7 keV

For the simulations, we employ Genesis 1.3 - a 3D time-
dependent FEL simulation code [23]. Seed characteristics
after the monochromator, at 7 keV, for the DBFEL studied
for LCLS are shown in Fig. 2 [17]. It is clear that if we look
at the time or spectral domain, the seed power has a strong
fluctuation. As summarized in Table 1, for the DBFEL we
studied the seed fluctuation can be as high as 85%.

Figure 2: Seed pulse parameters at 7 keV after the four-
bounce 𝐶∗(111) monochromator: spectrum (left) and tem-
poral profile (right). Gray lines represent shot-to-shot per-
formance and the black curve is a multi-shot average.

Table 1: Electron Beam Properties Comparison Between
DBFEL and EDBFEL

DBFEL EDBFEL Units
1st bunch current 3.5 10 kA
1st bunch length 15 0.38 fs
2nd bunch current 3.5 3.5 kA
2nd bunch length 15 15 fs
1st stage length 28.6 53.1 m
Seed fluctuation >85% <30%
Output FHWM 3.89 × 10−5 4.09 × 10−5 a.u.

EDBFEL at 7 keV
In this subsection, we describe the working principle of

the EDBFEL scheme. As mentioned in the Introduction,
the DBFEL employs two electron bunches with a separation
of 0.7 ns. The first bunch is used to generate a high power
seed. The second electron bunch is seeded and generates a
high-power, narrow-bandwidth hard X-ray pulse. However,
the SASE pulse generated by the first bunch in the high gain
regime has a strong fluctuation due to the stochastic nature

of SASE FEL. Hence, the seed generated by filtering the
SASE pulse with a monochromator will inherit the fluctua-
tions from SASE, and due to the narrow bandwidth of the
frequency filter, the power fluctuation of the seed is even
higher, close to 100%, as can be seen in Table 1.

However, using a single spike X-ray pulse amplified to
saturation, the fluctuation can be significantly reduced. The
effect of using a saturated seed pulse has been demonstrated
in the soft X-ray self-seeding regime [22]. Here, we extend
it to the DBFEL in the hard X-ray regime, also using a single
spike seed signal generated by the first bunch. The detailed
parameters list for the DBFEL already studied, and EDBFEL
studied here is shown in Table 1. As we can see, the first
bunch in EDBFEL has a much higher current to saturate
earlier and a shorter bunch length to generate a single-spike
pulse. The high current short bunch can be obtained by
manipulating the first bunch with an external laser, and a
compressor, as in an eSASE system [24]. To amplify the
seed signal to saturation, the first stage of EDBFEL is longer
than in the DBFEL case, as shown again in Table 1.

The current profile for the EDBFEL case is shown in Fig. 3.
To understand the statistical performance of EDBFEL, 50
simulation runs with different initial shot noise have been
done.

Figure 3: Current profile used in EDBFEL regime: a 10 kA,
0.38 fs electron bunch (orange line) as the first bunch, a
3.5 kA, 15 fs electron bunch as the second bunch (blue line),
delayed 0.7 ns compared with the first bunch.

In the first stage of EDBFEL, the high current first bunch
will lase, and, due to the short bunch length and high current,
will saturate quickly (about 50 m) and generate a single-spike
pulse. The gain curve and spectrum of the first bunch at the
end of the first stage are shown in Fig. 4. As we can see in
Fig. 4, due to the saturation effects, at the end of the first
stage, the pulse energy fluctuation is much smaller than it is
in the high gain regime, and as a result of that, the spectrum
fluctuation is pretty small as well.

After the monochromator, we obtain a low fluctuation,
narrow bandwidth, high-power seed signal, as shown in
Fig. 5, where we see that the seed power fluctuation is quite
small, it has been reduced down to 30%, as given in Table 1.
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Figure 4: First bunch performance: gain curve (left), spec-
trum at the end of first stage (right).Gray lines represent
shot-to-shot performance and the black curve is a multi-shot
average.

Figure 5: Seed performance: frequency domain (left), time
domain (right). Gray lines represent shot-to-shot perfor-
mance and the black curve is a multi-shot average.

Note that, the length of the seed pulse in the time domain
plot has been increased to about 15 fs, corresponding to
the monochromator bandwidth. Hence, even if the duration
of the pulse impinging on the monochromator is short, the
duration of the seed signal after the monochromator to seed
the second bunch is much longer. We have chosen the length
of the second bunch to match the seed signal length.

The seeded second bunch generates an X-ray pulse that is
amplified to saturation in the second part of the undulator,
following the monochromator. Thanks to the low power
fluctuation of the seed, the saturation power fluctuation of
the second bunch is reduced to 15%, as shown in Table 1.
The time domain profile of the saturated pulses and the
corresponding frequency domain power spectra are shown in
Fig. 6. Among the 50 shots simulated, with different initial
noise, there are only two cases with very low power respect
to the average. The saturation bandwidth is 4.09 × 10−5.

SUMMARY
In this paper, we have demonstrated that the EDBFEL sys-

tem can significantly suppress power fluctuations for 7 keV
photons while providing a narrow bandwidth and good longi-
tudinal coherence. The simulation results show that the seed
power fluctuation can be suppressed down to 30%, and the
saturation power fluctuation can be reduced to 15%. Com-
pared with the original DBFEL scheme, with seed power
fluctuation as high as 85%, EDBFEL provides a much more
stable narrow bandwidth signal providing more capabili-
ties for scientific experiments. It is worth mentioning that

Figure 6: Second bunch performance at saturation: fre-
quency domain (left), time domain (right). Gray lines rep-
resent shot-to-shot performance and the black curve is a
multi-shot average.

the seeding efficiency can be further improved by crystal
tuning [25] and that the FEL performance may be further
improved with taper optimization [26, 27].
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