Author: Patriarca, A.
Paper Title Page
MOPAB410 Preliminary Studies of a Compact VHEE Linear Accelerator System for FLASH Radiotherapy 1229
 
  • L. Giuliano, F. Bosco, M. Carillo, D. De Arcangelis, L. Faillace, L. Ficcadenti, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • D. Alesini, M. Behtouei, B. Spataro
    INFN/LNF, Frascati, Italy
  • G. Cuttone, G. Torrisi
    INFN/LNS, Catania, Italy
  • V. Favaudon, S. Heinrich, A. Patriarca
    Institut Curie - Centre de Protonthérapie d’Orsay, Orsay, France
 
  Funding: The work is supported by La Sapienza University, research grant "grandi progetti di ricerca 2020".
The Flash Radio Therapy is a revolutionary new technique in the cancer cure: it spares healthy tissue from the damage of the ionizing radiation maintaining the tumor control as efficient as in conventional radiotherapy. To allow the implementation of the FLASH Therapy concept into actual clinical use, it is necessary to have a linear accelerator able to deliver the very high dose and very high dose rate (>106 Gy/s) in a very short irradiation time (beam on time < 100ms). Low energy S-band Linacs (up to 7 MeV) are being used in Radiobiology and pre-clinic applications but in order to treat deep tumors, the energy of the electrons should achieve the range of 60-100 MeV. In this paper, we address the main issues in the design of a compact C band (5.712 GHz) electron linac-VHEE for FLASH Radio Therapy. We present preliminary studies on C-band structures at La Sapienza and at INFN-LNS, aiming to reach a high accelerating gradient and high current necessary to deliver a dose >1 Gy/pulse, with very short electron pulse.
 
poster icon Poster MOPAB410 [0.650 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB410  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)