Author: Parise, R.L.
Paper Title Page
TUPAB400 Manufacturing of Ceramic Vacuum Chambers for Sirius On-Axis Kicker 2457
 
  • R. Defavari, O.R. Bagnato, M.W.A. Feitosa, F.R. Francisco, D.Y. Kakizaki, R.L. Parise, R.D. Ribeiro
    LNLS, Campinas, Brazil
 
  Ceramic vacuum chambers were produced by LNLS for the Sirius kickers. Alumina tubes with an elliptical inner shape of 9.5 mm (V) x 29 mm (H) and 500 mm long were successfully manufactured by a Brazilian company. Metallic F136 titanium flanges were brazed to Nb inserts using Ag-58.5Cu-31.5Pd wt% alloy, these inserts were brazed to the ceramic using Ag-26.7Cu-4.5Ti wt% active filler metal. A titanium film was coated inside the chamber using argon plasma by RF Magnetron Sputtering technique. Samples have been investigated by Scanning Electron Microscopy (SEM) to measure film thickness along the inner section of the tube, coating morphology, chemical composition and homogeneity. The total electrical resistance of the tube was also monitored during the sputtering process to achieve the desired value (0.2 ohms/square). In this contribution, we present the results of an On-Axis kicker manufacturing process developed by LNLS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB400  
About • paper received ※ 18 May 2021       paper accepted ※ 31 May 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB401 Mechanical Design, Fabrication and Characterization of Electron Beam Position Monitors for Sirius 2461
 
  • R. Defavari, O.R. Bagnato, M.W.A. Feitosa, F.R. Francisco, G.R. Gomes, D.Y. Kakizaki, R.L. Parise, R.D. Ribeiro
    LNLS, Campinas, Brazil
 
  Beam Position Monitors were designed and manufactured to meet Sirius operation requirements. Final dimensional accuracy and stability of the BPM were achieved by careful specification of its components’ manufacturing tolerances and materials. AISI-305 Stainless Steel was used for the BPM support fabrication due to magnetic and thermal expansion constraints. High purity molybdenum for the electrode pin and Ti6Al4V F136 G23 alloy for housing was used to manufacture the sensor components for their thermal characteristics. The electrical insulator was made of high alumina. The materials were joined by an active metal brazing process using 0,01mm accurate fixtures. The brazed sensors were subjected to dimensional, mechanical, and metallurgical testing, as well as leak detection and optical microscopy inspection at each stage. The sensors were joined in Ti6Al4V F136 BPM bodies using TIG welding. Dimensional sorting was used to choose groups of sensors-to-body, and body-to-support pairs during the final assembly. 160 BPMs are currently in operation on Sirius storage ring. In this contribution, we present the results of BPM manufacturing and testing processes developed for Sirius.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB401  
About • paper received ※ 18 May 2021       paper accepted ※ 31 May 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB334 Development of Diffusion Bonded Joints of AA6061 Aluminum Alloy to AISI 316LN Stainless Steel for Sirius Planar Undulators 3459
 
  • R.L. Parise, O.R. Bagnato, R. Defavari, M.W.A. Feitosa, F.R. Francisco, D.Y. Kakizaki, R.D. Ribeiro
    LNLS, Campinas, Brazil
 
  LNLS has been commissioning Sirius, a 4th-generation synchrotron light source. The commissioning of the beamlines has been mainly done by using planar undulator, which uses in-house built aluminum vacuum chambers with ultra-high vacuum tight bimetallic flanges. In order to manufacture these flanges, diffusion bonded joints of AA6061 aluminum alloy to AISI 316LN stainless steel were developed. Diffusion bonding was carried out at 400-500°C for 45-60 min, applying a load of 9.8MPa in a vacuum furnace. Also, the surface preparation for Al and SS was investigated. SEM observation revealed that an 1-3 µm reaction layer was formed at the AA6061/Ni-plated interface. The intermetallic compound Al3Ni was identified in the reaction layer. The obtained Al/SS joints showed mean ultimate strength of 84 MPa, with the fracture occurring in the Al/reaction layer interface. Bake-out cycles followed by leak tests were carried out to validate the process and approve their use on the planar undulator vacuum chambers. Two undulators with Al/SS flanges have been installed and are under operation in the storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB334  
About • paper received ※ 17 May 2021       paper accepted ※ 17 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)