Author: Neumann, A.
Paper Title Page
MOPAB347 High Power Coupler Conditioning for bERLinPro Energy Recovery Linac Injector 1080
 
  • A. Neumann, W. Anders, F. Göbel, A. Heugel, S. Klauke, J. Knobloch, M. Schuster, Y. Tamashevich
    HZB, Berlin, Germany
 
  Funding: The work is funded by the Helmholtz-Association, BMBF, the state of Berlin and HZB.
Helmholtz Zentrum Berlin is currently finalizing the construction of the demonstrator Energy Recovery Linac bERLinPro *. The first part, which will be commissioned, will be the injector consisting of a superconducting RF (SRF) photo-injector (Gun) and a Booster module made up of three two cell SRF cavities. For the latter the 2.3 MeV beam from the gun needs to be accelerated to 6.5 MeV, whereas one Booster cavity will be operated in zero-crossing mode for bunch-shortening. Thus, for the final stage with a 100 mA beam, the twin power couplers of the Booster cavity need to deliver up to 120 kW in travelling continous wave (CW) mode at 1.3 GHz each. To achieve that, a dedicated coupler conditioning setup was installed and commissioned. Here, we will present the first conditioning results with the bERLinPro Booster fundamental power couplers in pulsed and CW regime.
* M. Abo-Bakr et al., in Proc. 9th Int. Particle Accelerator Conf. (IPAC’18), Vancouver, BC, Canada, Apr. 4,, pp. 4127-4130, doi:10.18429/JACoW-IPAC2018-THPMF034
 
poster icon Poster MOPAB347 [3.256 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB347  
About • paper received ※ 18 May 2021       paper accepted ※ 08 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB343 Final Design Studies for the VSR DEMO 1.5 GHz Coupler 2300
 
  • E. Sharples-Milne, V. Dürr, P. Echevarria, J. Knobloch, A. Neumann, A.V. Vélez
    HZB, Berlin, Germany
 
  With the 1.5 GHz couplers for the Variable pulse length Storage Ring (VSR) DEMO now in the manufacturing stages, the studies that led to the final coupler design will be presented. The system specific constraints and design modifications that combat the challenges of thermomechanical stresses, higher order mode (HOM) propagation and dimensional constraints are explored. This includes S-Parameter analysis, an in-depth study of the coupling factor, and multipacting studies for the average (1.5 kW) and peak (16 kW) power.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB343  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)