Author: Nakazawa, Y.
Paper Title Page
MOPAB195 Development of a Disk-and-Washer Cavity for the J-PARC Muon g-2/EDM Experiment 658
 
  • Y. Takeuchi, J. Tojo
    Kyushu University, Fukuoka, Japan
  • E. Cicek, K. Futatsukawa, N. Kawamura, T. Mibe, M. Otani, T. Yamazaki, M. Yoshida
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • R. Kitamura, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Nakazawa
    Ibaraki University, Hitachi, Ibaraki, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Sue, K. Sumi, M. Yotsuzuka
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
 
  At J-PARC, an experiment using muons accelerated by a linac is planned to measure the anomalous magnetic moment of muons and to search for the electric dipole moment. A 1296 MHz disk and washer (DAW) coupled cavity linac (CCL) is being developed for use in the middle beta section of the muon linac. The DAW CCL consists of 14 tanks with 11 cells each. All tanks are connected by bridge couplers and electromagnetic quadrupole doublets for focusing are installed in each bridge coupler. The basic design of the DAW cavity has already been completed, and now detailed cavity design studies and manufacturing process studies are underway. In this poster, we will report about these studies and the preparation status of manufacturing the DAW cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB195  
About • paper received ※ 20 May 2021       paper accepted ※ 01 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB325 Development of Bunch Width Monitor with High Time Resolution for Low Emittance Muon Beam in the J-PARC Muon g-2 / EDM Experiment 1004
 
  • M. Yotsuzuka, T. Iijima, K. Inami, Y. Sue, K. Sumi
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • T. Iijima
    KMI, Nagoya, AIchi Prefecture, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
  • T. Mibe
    KEK, Tsukuba, Japan
  • Y. Nakazawa
    Ibaraki University, Ibaraki, Japan
  • M. Otani, N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Takeuchi
    Kyushu University, Fukuoka, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
 
  The J-PARC muon g-2/EDM experiment plans to measure the muon anomalous magnetic moment and electric dipole moment sensitive to new physics with high precision. This experiment uses a novel method using the low-emittance muon beam achieved by cooling and re-acceleration. In the muon linac consisting of four different accelerating cavities, the main cause of the emittance growth is the beam mismatch between the different cavities. Especially for the cavity in the low-beta section (ß=0.08-0.27), the longitudinal acceptance is narrow and beam mismatch has a significant impact. In order to perform beam matching in the low-beta cavity, a new beam monitor that can measure the low-emittance muon beam with high time resolution is required. Therefore, we developed a bunch width monitor (BWM) using a microchannel plate. The time resolution of the BWM was measured to be 40 picoseconds on the test bench using a picosecond pulse laser. It means that the BWM is possible to perform diagnosis with a phase accuracy of 1% for the acceleration phase of 324 MHz. We also evaluated factors that limit the current time resolution. In this presentation, the results of an evaluation of the BWM are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB325  
About • paper received ※ 19 May 2021       paper accepted ※ 08 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB174 Basic Design Study for Disk-Loaded Structure in Muon LINAC 1801
 
  • K. Sumi, T. Iijima, K. Inami, Y. Sue, M. Yotsuzuka
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • H. Ego, T. Mibe, M. Yoshida
    KEK, Ibaraki, Japan
  • T. Iijima
    KMI, Nagoya, AIchi Prefecture, Japan
  • Y. Kondo
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • Y. Nakazawa
    Ibaraki University, Hitachi, Ibaraki, Japan
  • M. Otani, N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Takeuchi
    Kyushu University, Fukuoka, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
 
  The world’s first disk-loaded structure (DLS) at the high-velocity part of a muon LINAC is under development for the J-PARC muon g-2/EDM experiment. We have simulated the first designed constant impedance DLS to accelerate muons from ß = 0.7 to 0.94 at an operating frequency of 1296 MHz and a phase of -10 degrees to ensure longitudinal acceptance and have shown the quality of the beam meets our requirements. Because the structure needs a high RF power of 80 MW to generate a gradient of 20 MV/m, a constant gradient DLS with the higher acceleration efficiency is being studied for lower operating RF power. In this poster, we will show the cell structure design yielding a gradient of 20 MV/m with lower RF power.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB174  
About • paper received ※ 19 May 2021       paper accepted ※ 31 August 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB06 Development of an APF IH-DTL in the J-PARC Muon g-2/EDM Experiment 2544
 
  • Y. Nakazawa, H. Iinuma
    Ibaraki University, Hitachi, Ibaraki, Japan
  • E. Cicek, N. Kawamura, T. Mibe, M. Yoshida
    KEK, Ibaraki, Japan
  • N. Hayashizaki
    RLNR, Tokyo, Japan
  • Y. Iwata
    NIRS, Chiba-shi, Japan
  • R. Kitamura, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • M. Otani, N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Sue, K. Sumi, M. Yotsuzuka
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • Y. Takeuchi
    Kyushu University, Fukuoka, Japan
  • T. Yamazaki
    KEK, Tokai Branch, Tokai, Naka, Ibaraki, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
 
  An inter-digital H-mode drift-tube linac (IH-DTL) is under development in a muon linac at the J-PARC muon g-2/EDM experiment. It accelerates muons from 0.34 MeV to 4.3 MeV at an operating frequency of 324 MHz. The cavity can be miniaturized by introducing the alternative phase focusing (APF) method that enables transverse focusing only with an E-field. The APF IH-DTL cavity was modeled by a three-dimensional field analysis, and the beam dynamics were evaluated numerically. The beam emittance was calculated as 0.316pi and 0.189pi mm mrad in the horizontal and vertical directions, respectively. It satisfies the experimental requirement. Actually, the field error due to the fabrication errors and thermal expansion during operation causes an emittance growth. It was evaluated that the optimized tuners can suppress the emittance growth to less than 10%. In this paper, the detailed design of the APF IH-DTL including the tuner will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXB06  
About • paper received ※ 19 May 2021       paper accepted ※ 29 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)