Paper | Title | Page |
---|---|---|
MOPAB009 | Review of the Fixed Target Operation at RHIC in 2020 | 69 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. As part of the Beam Energy Scan (BES) physics program, RHIC operated in Fixed Target mode at various beam energies in 2020. The fixed target experiment, achieved by scraping the beam halo of the circulating beam on a gold ring inserted in the beam pipe upstream of the experimental detectors, extends the range of the center-of-mass energy for BES. The machine configuration, control of rates, and results of the fixed target experiment operation in 2020 will be presented in this report. |
||
![]() |
Poster MOPAB009 [2.913 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB009 | |
About • | paper received ※ 16 May 2021 paper accepted ※ 17 August 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB010 | RHIC Beam Energy Scan Operation with Electron Cooling in 2020 | 72 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. RHIC provided Au-Au collisions at beam energies of 5.75 and 4.59 GeV/nucleon for the physics program in 2020 as a part of the Beam Energy Scan II experiment. The operational experience at these energies will be reported with emphasis on their unique features. These unique features include the addition of a third harmonic RF system to enable a large longitudinal acceptance at 5.75 GeV/nucleon, the application of additional lower frequency cavities for alleviating space charge effects, and the world-first operation of cooling with an RF-accelerated bunched electron beam. |
||
![]() |
Poster MOPAB010 [3.523 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB010 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 29 July 2021 issue date ※ 10 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB042 | Large Radial Shifts in the EIC Hadron Storage Ring | 1443 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Electron Ion Collider will collide hadrons in the Hadron Storage Ring (HSR) with ultra-relativistic electrons in the Electron Storage Ring. The HSR design trajectory includes a large radial shift over a large fraction of its circumference, in order to adjust the hadron path length to synchronize collisions over a broad range of hadron energies. The design trajectory goes on-axis through the magnets, crab cavities and other components in the six HSR Insertion Regions. This paper discusses the issues involved and reports on past and future beam experiments in the Relativistic Heavy Ion Collider, which will be upgraded to become the HSR. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB042 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 15 June 2021 issue date ※ 21 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |