Paper | Title | Page |
---|---|---|
TUPAB285 | Broadband Imaging of Coherent Radiation as a Single-Shot Bunch Length Monitor with Femtosecond Resolution | 2147 |
|
||
Funding: This work is supported by the AWAKE-UK project funded by STFC and the STFC Cockcroft core grant No. ST/G008248/1 Bunch length measurements with femtosecond resolution are a key component in the optimisation of beam quality in FELs, storage rings, and plasma-based accelerators. This contribution presents the development of a novel single-shot bunch length monitor with femtosecond resolution, based on broadband imaging of the spatial distribution of emitted coherent radiation. The technique can be applied to many radiation sources; in this study the focus is coherent transition radiation (CTR) at the MAX IV Short Pulse Facility. Bunch lengths of interest at this facility are <100 fs FWHM; therefore the CTR is in the THz to Far-IR range. To this end, a THz imaging system has been developed, utilising high resistivity float zone silicon lenses and a pyroelectric camera; building upon previous results where single-shot compression monitoring was achieved. This contribution presents simulations of this new CTR imaging system to demonstrate the synchrotron radiation mitigation and imaging capability provided, alongside initial measurements and a bunch length fitting algorithm, capable of shot-to-shot operation. A new machine learning analysis method is also discussed. |
||
![]() |
Poster TUPAB285 [2.008 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB285 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 24 June 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB113 | Highlights From the Conceptual Design Report of the Soft X-Ray Laser at MAX IV | 1651 |
|
||
Funding: Knut and Alice Wallenberg Foundation The SXL (Soft X-ray Laser) project developed a conceptual design for a soft X-ray Free Electron Laser in the 1–5 nm wavelength range, driven by the existing MAX IV 3 GeV linac. In this contribution we will focus on the FEL operation modes developed for the first phase of the project based on two different linac modes. The design work was supported by the Knut and Alice Wallenberg foundation and by several Swedish universities and organizations (Stockholm, Uppsala, KTH Royal Institute of Technology, Stockholm-Uppsala FEL center, MAX IV laboratory and Lund University). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB113 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 17 June 2021 issue date ※ 19 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |