Author: Mansten, E.
Paper Title Page
TUPAB285 Broadband Imaging of Coherent Radiation as a Single-Shot Bunch Length Monitor with Femtosecond Resolution 2147
 
  • J. Wolfenden, R.B. Fiorito, E. Kukstas, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M. Brandin, B.S. Kyle, E. Mansten, S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
  • R.B. Fiorito, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Mansten
    Lund University, Division of Atomic Physics, Lund, Sweden
  • T.H. Pacey
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: This work is supported by the AWAKE-UK project funded by STFC and the STFC Cockcroft core grant No. ST/G008248/1
Bunch length mea­sure­ments with fem­tosec­ond res­o­lu­tion are a key com­po­nent in the op­ti­mi­sa­tion of beam qual­ity in FELs, stor­age rings, and plasma-based ac­cel­er­a­tors. This con­tri­bu­tion pre­sents the de­vel­op­ment of a novel sin­gle-shot bunch length mon­i­tor with fem­tosec­ond res­o­lu­tion, based on broad­band imag­ing of the spa­tial dis­tri­b­u­tion of emit­ted co­her­ent ra­di­a­tion. The tech­nique can be ap­plied to many ra­di­a­tion sources; in this study the focus is co­her­ent tran­si­tion ra­di­a­tion (CTR) at the MAX IV Short Pulse Fa­cil­ity. Bunch lengths of in­ter­est at this fa­cil­ity are <100 fs FWHM; there­fore the CTR is in the THz to Far-IR range. To this end, a THz imag­ing sys­tem has been de­vel­oped, util­is­ing high re­sis­tiv­ity float zone sil­i­con lenses and a py­ro­elec­tric cam­era; build­ing upon pre­vi­ous re­sults where sin­gle-shot com­pres­sion mon­i­tor­ing was achieved. This con­tri­bu­tion pre­sents sim­u­la­tions of this new CTR imag­ing sys­tem to demon­strate the syn­chro­tron ra­di­a­tion mit­i­ga­tion and imag­ing ca­pa­bil­ity pro­vided, along­side ini­tial mea­sure­ments and a bunch length fit­ting al­go­rithm, ca­pa­ble of shot-to-shot op­er­a­tion. A new ma­chine learn­ing analy­sis method is also dis­cussed.
 
poster icon Poster TUPAB285 [2.008 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB285  
About • paper received ※ 17 May 2021       paper accepted ※ 24 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB113 Highlights From the Conceptual Design Report of the Soft X-Ray Laser at MAX IV 1651
 
  • F. Curbis, J. Andersson, L. Isaksson, B.S. Kyle, F. Lindau, E. Mansten, H. Tarawneh, P.F. Tavares, S. Thorin, A.S. Vorozhtsov
    MAX IV Laboratory, Lund University, Lund, Sweden
  • S. Bonetti
    Stockholm University, Stockholm, Sweden
  • V.A. Goryashko, P.M. Salén
    Uppsala University, Uppsala, Sweden
  • P. Johnsson, S.P. Pirani, M.A. Pop, W. Qin, S. Werin
    Lund University, Lund, Sweden
  • M. Larsson
    Stockholm University, Department of Physics, Stockholm, Sweden
  • A. Nilsson
    FYSIKUM, AlbaNova, Stockholm University, Stockholm, Sweden
  • J.A. Sellberg
    KTH Physics, Stockholm, Sweden
 
  Funding: Knut and Alice Wallenberg Foundation
The SXL (Soft X-ray Laser) pro­ject de­vel­oped a con­cep­tual de­sign for a soft X-ray Free Elec­tron Laser in the 1–5 nm wave­length range, dri­ven by the ex­ist­ing MAX IV 3 GeV linac. In this con­tri­bu­tion we will focus on the FEL op­er­a­tion modes de­vel­oped for the first phase of the pro­ject based on two dif­fer­ent linac modes. The de­sign work was sup­ported by the Knut and Alice Wal­len­berg foun­da­tion and by sev­eral Swedish uni­ver­si­ties and or­ga­ni­za­tions (Stock­holm, Up­p­sala, KTH Royal In­sti­tute of Tech­nol­ogy, Stock­holm-Up­p­sala FEL cen­ter, MAX IV lab­o­ra­tory and Lund Uni­ver­sity).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB113  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)