|
- A.G. Tribendis, Y.A. Biryuchevsky, K.N. Chernov, A.N. Dranitchnikov, E. Kenzhebulatov, A.A. Kondakov, A.A. Krasnov, Ya.G. Kruchkov, S.A. Krutikhin, G.Y. Kurkin, A.M. Malyshev, A.Yu. Martynovsky, N.V. Mityanina, S.V. Motygin, A.A. Murasev, V.N. Osipov, V.M. Petrov, E. Pyata, E. Rotov, V.V. Tarnetsky, I.A. Zapryagaev, A.A. Zhukov
BINP SB RAS, Novosibirsk, Russia
- O.I. Brovko, A.M. Malyshev, I.N. Meshkov, E. Syresin
JINR, Dubna, Moscow Region, Russia
- I.N. Meshkov
Saint Petersburg State University, Saint Petersburg, Russia
- E. Rotov
NSU, Novosibirsk, Russia
- A.G. Tribendis
NSTU, Novosibirsk, Russia
- A.V. Zinkevich
Triada-TV, Novosibirsk, Russia
|
|
|
This paper reports on the design features and construction progress of the three RF systems for the NICA collider being built at JINR, Dubna. Each of the two collider rings has three RF systems named RF1 to 3. RF1 is a barrier bucket system used for particles capturing and accumulation during injection, RF2 and 3 are resonant systems operating at 22nd and 66th harmonics of the revolution frequency and used for the 22 bunches formation. The RF systems are designed and produced by Budker INP. Solid state RF power amplifiers developed by the Triada-TV company, Novosibirsk, are used for driving the RF2 and three cavities. Two RF1 stations were already delivered to JINR, the prototypes of the RF2 and 3 stations were built and successfully tested at BINP. Series production of all eight RF2 and sixteen RF3 stations is in progress. The design modifications and test results are presented.
|
|