Author: Lu, W.
Paper Title Page
WEPAB198 Beam Dynamics Design of a Synchrotron Injector with Laser-Accelerated Ions 3085
 
  • M.Z. Tuo, X. Guan, W. Lu, P.F. Ma, Y. Wan, X.W. Wang, Q.Z. Xing, H.J. Yao, S.X. Zheng
    TUB, Beijing, People’s Republic of China
 
  We present, in this paper, the beam dynamics design of a linac injector with laser-accelerated carbon-ions for a medical synchrotron. In the design, the initial transverse divergence is reduced by two apertures. The beam is focused transversely through a quadrupole triplet lens downstream the apertures. The output energy spread of the extracted beam at the exit of the injector is compressed from ±6% to ±0.6% by a debuncher and a bend magnet system to meet the injection requirement for the synchrotron. By changing the width of imaging slit of the bend magnet system, the beam with energy of 4±0.024 MeV/u is extracted, and the particle number per shot and transverse emittances of the beam at the exit of the injector can be regulated through adjusting the slit height. The dynamics design can pave the way for the future concept research of the synchrotron injector.  
poster icon Poster WEPAB198 [1.034 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB198  
About • paper received ※ 16 May 2021       paper accepted ※ 16 June 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)