Author: Kulevoy, T.
Paper Title Page
MOPAB206 The RF Parameters of Heavy Ions Linac 679
 
  • A. Sitnikov, G. Kropachev, T. Kulevoy, D.N. Selesnev, A.I. Semennikov
    ITEP, Moscow, Russia
  • M.L. Smetanin, A.V. Telnov, N.V. Zavyalov
    VNIIEF, Sarov, Russia
 
  The new linac for A/Z = 8, output energy 4 MeV/u and 3 mA current is under development at NRC "Kurchatov Institute"-ITEP. The linac consists of Radio-Frequency Quadrupole (RFQ) with operating frequency 40 MHz and two sections of Drift Tube Linac (DTL) with operating frequency 80 and 160 MHz, correspondently. Both DTL has a modular structure and consists of separated individually phased resonators with focusing magnetic quadrupoles located between the cavities. The DTL1 is based on the quarter-wave resonators meanwhile DTL2 is based on IH 5-gap resonators. The 6D beam matching between RFQ and DTLs is provided by magnetic quadrupole lenses and 2-gaps RF-bunchers. The paper presents results of the radio-frequency (RF) design of linac accelerating structures.  
poster icon Poster MOPAB206 [0.559 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB206  
About • paper received ※ 14 May 2021       paper accepted ※ 01 July 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB224 Optimization and Error Studies for the USSR HMBA Lattice 730
 
  • L. Hoummi, N. Carmignani, L.R. Carver, S.M. Liuzzo, T.P. Perron, S.M. White
    ESRF, Grenoble, France
  • I.A. Ashanin, S.M. Polozov
    MEPhI, Moscow, Russia
  • T. Kulevoy
    ITEP, Moscow, Russia
  • T. Kulevoy
    NRC, Moscow, Russia
 
  Several new accelerator facilities will be built in Russia in the next few years. One of those facilities is a 6 GeV storage ring (SR) light source, the Ultimate Source of Synchrotron Radiation (USSR) to be built in Protvino, near Moscow. The Cremlin+ project aims to incorporate in this activity the best experience of European Accelerator Laboratories. The optimization of such optics including realistic errors and a commissioning-like sequence of corrections, using Multi-Objective Genetic Algorithms (NSGA-II) is presented. Several corrections schemes are also tested.  
poster icon Poster MOPAB224 [1.164 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB224  
About • paper received ※ 12 May 2021       paper accepted ※ 01 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB300 Description of the Beam Diagnostics Systems for the SOCIT, SODIT and SODIB Applied Research Stations Based on the NICA Accelerator Complex 946
 
  • A. Slivin, A. Agapov, A.A. Baldin, A.V. Butenko, G.A. Filatov, K.N. Shipulin, E. Syresin, G.N. Timoshenko, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • D.V. Bobrovskiy, A.I. Chumakov, S. Soloviev
    MEPhI, Moscow, Russia
  • I.L. Glebov, V.A. Luzanov
    GIRO-PROM, Dubna, Moscow Region, Russia
  • A.S. Kubankin
    BelSU, Belgorod, Russia
  • T. Kulevoy, Y.E. Titarenko
    ITEP, Moscow, Russia
 
  Within the framework of the NICA project an Innovation Block is being constructed. It includes an applied research station for microchips with a package for Single Event Effects (SEE) testing (energy range of 150-500 MeV/n, the SODIT station), an applied research station for testing of decapsulated microchips (ion energy up to 3,2 MeV/n, the SOCIT station), and an applied research station for space radiobiological research and modelling of influence of heavy charged particles on cognitive functions of the brain of small laboratory animals and primates (energy range 500-1000 MeV/n, the SODIB station). The systems for diagnostics and control of the beam characteristics during the certification and adjustment as well as the systems for online diagnostics and control of the beam characteristics of the SOCIT, SODIT and SODIB applied research stations are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB300  
About • paper received ※ 19 May 2021       paper accepted ※ 27 May 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB049 USSR HMBA Storage Ring Lattice Options 1466
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, J. Chavanne, L. Hoummi, J. Jacob, T.P. Perron, R. Versteegen, S.M. White
    ESRF, Grenoble, France
  • I.A. Ashanin, V.S. Dyubkov, S.M. Polozov
    MEPhI, Moscow, Russia
  • I.A. Ashanin, V.S. Dyubkov, T. Kulevoy, S.M. Polozov
    NRC, Moscow, Russia
  • T. Kulevoy
    ITEP, Moscow, Russia
 
  Funding: European Union’s Horizon 2020 research and innovation program under grant #871072 Russian federation resolution #287
Several new accelerator facilities will be built in Russia in a few years from now. One of those facilities is a 6GeV storage ring (SR) light source (USSR - Ultimate Source of Synchrotron Radiation) to be built in Protvino, near Moscow. The Cremlin+ project aims to incorporate in this activity the best experience of European Accelerator Laboratories. The design of the optics for this SR is presented here in two declinations leading to 70 pm-rad equilibrium horizontal emittance. The first is a 40 cells lattice, the second is the same but includes high field Short Bending magnet sources in each cell. Optics and high order multipole optimizations are performed to obtain sufficient lifetime and dynamic aperture for a conservative off-axis injection.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB049  
About • paper received ※ 12 May 2021       paper accepted ※ 11 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB050 A Long Booster Option for the USSR 6 GeV Storage Ring 1470
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Hoummi, T.P. Perron, R. Versteegen, S.M. White
    ESRF, Grenoble, France
  • I.A. Ashanin, S.M. Polozov
    MEPhI, Moscow, Russia
  • I.A. Ashanin, T. Kulevoy, S.M. Polozov
    NRC, Moscow, Russia
  • T. Kulevoy
    ITEP, Moscow, Russia
 
  Funding: European Union’s Horizon 2020 research and innovation program under grant #871072 Russian federation resolution no. 287
The design of the optics of a full length 6 GeV booster for the USSR (Ultimate Source of Synchrotron Radiation) are presented. This option already followed with success by other laboratories, would allow to obtain a small emittance injected beam thus enabling smooth top-up operation. Details of the design inspired by the ESRF DBA lattice and the possible operating modes are described. The transfer lines booster to storage ring are also addressed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB050  
About • paper received ※ 12 May 2021       paper accepted ※ 11 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB057 Carbon Beam at I-3 Injector for Semiconductor Implantation 1489
 
  • A.A. Losev, P.N. Alekseev, N.N. Alexeev, T. Kulevoy, A.D. Milyachenko, Yu.A. Satov, A. Shumshurov
    ITEP, Moscow, Russia
  • P.B. Lagov
    NUST MISIS, Moscow, Russia
  • M.E. Letovaltseva
    MIREA, Moscow, Russia
  • Y.S. Pavlov
    IPCE RAS, Moscow, Russia
 
  Carbon implantation can be effectively used for axial minority charge carriers lifetime control in various silicon bulk and epitaxial planar structures. When carbon is implanted, more stable recombination centers are formed and silicon is not doped with additional impurities, as for example, when irradiated with protons or helium ions. Economically, such a process competes with alternative methods, and is more efficient for obtaining small lifetimes (several nanoseconds). I-3 ion injector with laser-plasma ion source in Institute for theoretical and experimental physics (ITEP) is used as ion implanter in semiconductors. The ion source uses pulsed CO2 laser setup with radiation-flux density of 1011 W/cm2 at target surface. The ion source produces beams of various ions from solid targets. The generated ion beam is accelerated in the two gap RF resonator at voltage of up to 2 MV per gap. Resulting beam energy is up to 4 MV per charge. Parameters of carbon ion beam generated and used for semiconductor samples irradiation during experiments for axial minority charge carriers lifetime control in various silicon bulk and epitaxial planar structures are presented.  
poster icon Poster TUPAB057 [0.630 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB057  
About • paper received ※ 15 May 2021       paper accepted ※ 28 May 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB299 Tuned Delay Unit for a Stochastic Cooling System at NICA Collider 2186
 
  • S.V. Barabin, T. Kulevoy, D.A. Liakin, A.Y. Orlov
    ITEP, Moscow, Russia
  • I.V. Gorelyshev, K.G. Osipov, V.V. Peshkov, A.O. Sidorin
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  Stochastic cooling is one of the crucial NICA (Nuclotron-based Ion Collider fAcility) subsystems. This system requires fine tuning of the response delay to the kicker, for both longitudinal and transverse stochastic cooling systems. The use of a digital delay line allows to add additional features such as a frequency dependent group velocity correction. To analyse the capabilities of the digital delay unit, a prototype of the device was created and tested. The article presents the characteristics of the prototype, its architecture and principle of operation, test results and estimations for the future developments.  
poster icon Poster TUPAB299 [0.493 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB299  
About • paper received ※ 17 May 2021       paper accepted ※ 10 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB298 Design of an Accurate LLRF System for an Array of Two-Gap Resonators 3360
 
  • D.A. Liakin, S.V. Barabin, T. Kulevoy, A.Y. Orlov
    ITEP, Moscow, Russia
 
  A particle accelerator based on an array of two-gap resonators requires a control system, which is responsible for precise setup and stabilization of the phase and magnitude of the electromagnetic field in resonators. We develop a cost-effective LLRF system for the array of more than 80 resonators and three different operating frequencies. The design is based on proved solution used for 5-resonators accelerator HILAC (project NICA, Dubna). This paper gives an overview of the basic structure and some specific features of the developing LLRF control system.  
poster icon Poster WEPAB298 [0.355 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB298  
About • paper received ※ 18 May 2021       paper accepted ※ 23 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB286 Quadrupole Focusing Lenses for Heavy Ion Linac 4359
 
  • V. Skachkov, A.V. Kozlov, G. Kropachev, T. Kulevoy, D.A. Liakin, O.S. Sergeeva, V.S. Skachkov, Yu. Stasevich
    ITEP, Moscow, Russia
 
  Simulation results of pulsed current electromagnet quadrupoles with integral of the magnetic field gradient up to 7 T are presented. Magnets for the DTL and MEBT focusing channels are designing for the heavy-ion linac in Institute for Theoretical and Experimental Physics (ITEP - NRC "Kurchatov Institute"). Appropriate conditions which promise getting the magnetic lens parameters required at restrictions on the overall length <130 mm as well as on the beam aperture >45 mm are defined. It is shown that the channel acceptance to beam emittance ratio desired not less than 3 can be provided by conventional low-carbon steel up to a magnetic aperture of 50 mm in diameter while beyond this size permendur is out of competition. Some aspects of the pulsed power supply system are considered and main parameters of the pulse current generator (PCG) are given.  
poster icon Poster THPAB286 [0.701 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB286  
About • paper received ※ 14 May 2021       paper accepted ※ 30 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB319 RF Power Generating System for the Linear Ion Accelerator 4417
 
  • V.G. Kuzmichev, T. Kulevoy, D.A. Liakin, D.N. Selesnev, A. Sitnikov
    ITEP, Moscow, Russia
  • M.L. Smetanin, A.V. Telnov, N.V. Zavyalov
    VNIIEF, Sarov, Russia
 
  An RF power supply system based on solid-state amplifiers has been developed for the linear accelerator of heavy ions. The report contains information on the characteristics and composition of the system, presents the LLRF structure for RFQ and DTL sections.  
poster icon Poster THPAB319 [0.275 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB319  
About • paper received ※ 16 May 2021       paper accepted ※ 16 August 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)