Author: Krzywinski, J.    [Krzywiński, J.]
Paper Title Page
THPAB217 Lightsource Unified Modeling Environment (LUME), a Start-to-End Simulation Ecosystem 4212
 
  • C.E. Mayes, A.L. Edelen, P. Fuoss, J.R. Garrahan, A. Halavanau, F. Ji, J. Krzywiński, W. Lou, N.R. Neveu, H.H. Slepicka
    SLAC, Menlo Park, California, USA
  • J.C. E, C. Fortmann-Grote
    EuXFEL, Schenefeld, Germany
  • C.M. Gulliford, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • L. Gupta
    University of Chicago, Chicago, Illinois, USA
  • A. Huebl, R. Lehé
    LBNL, Berkeley, California, USA
 
  SLAC is de­vel­op­ing the Light­source Uni­fied Mod­el­ing En­vi­ron­ment (LUME) for ef­fi­cient mod­el­ing of X-ray free elec­tron laser (XFEL) per­for­mance. This pro­ject takes a holis­tic ap­proach start­ing with the sim­u­la­tion of the elec­tron beams, to the pro­duc­tion of the pho­ton pulses, to their trans­port through the op­ti­cal com­po­nents of the beam­line, to their in­ter­ac­tion with the sam­ples and the sim­u­la­tion of the de­tec­tors, and fi­nally fol­lowed by the analy­sis of sim­u­lated data. LUME lever­ages ex­ist­ing, well-es­tab­lished sim­u­la­tion codes, and pro­vides stan­dard in­ter­faces to these codes via open-source Python pack­ages. Data are ex­changed in stan­dard for­mats based on openPMD and its ex­ten­sions. The plat­form is built with an open, well-doc­u­mented ar­chi­tec­ture so that sci­ence groups around the world can con­tribute spe­cific ex­per­i­men­tal de­signs and soft­ware mod­ules, ad­vanc­ing both their sci­en­tific in­ter­ests and a broader knowl­edge of the op­por­tu­ni­ties pro­vided by the ex­cep­tional ca­pa­bil­i­ties of X-ray FELs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB217  
About • paper received ※ 20 May 2021       paper accepted ※ 20 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXA07
Ringdown Measured in a Four-Bounce, 20 Meter Hard X-Ray Cavity  
 
  • J.P. MacArthur, Z. Huang, J. Krzywiński, G. Marcus, R.A. Margraf, T. Sato, D. Zhu
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the Department of Energy under contract DE-AC02-76SF00515
A cav­ity-based hard x-ray free-elec­tron laser (CBXFEL) could pro­duce fully co­her­ent pulses with a band­width sev­eral or­ders of mag­ni­tude below the in­trin­sic band­width of SASE. A cav­ity-based FEL is not a new con­cept - the first FEL was an os­cil­la­tor op­er­at­ing at 3.4 um - but sin­gle-pass am­pli­fi­ca­tion of spon­ta­neous ra­di­a­tion was the fastest path to gi­gawatt x-ray pow­ers. One un­proven com­po­nent of a CBXFEL is a sta­ble, high re­flec­tiv­ity cav­ity. To ad­dress this deficit we pre­sent ring-down mea­sure­ments in a 20 m round-trip cold cav­ity op­er­at­ing at 9.8 keV. The cav­ity is com­posed of four strain-re­lief-cut di­a­mond 400 Bragg mir­rors and a trans­mis­sion grat­ing for in/out-cou­pling. It is a test­bed for align­ment pro­to­cols and com­po­nent per­for­mance under re­al­is­tic ex­per­i­men­tal con­di­tions like source in­sta­bil­ity, op­tics im­per­fec­tions, and ther­mal drift.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)