Paper | Title | Page |
---|---|---|
TUPAB166 | A New Design of a Dressed Balloon Cavity with Superior Mechanical Properties | 1769 |
|
||
Funding: Work supported by the SBIR program of the U.S. Department of Energy, under grant DE-SC0020781 Superconducting spoke cavities are prone to multipactor - resonant raise of a number of electrons due to secondary emission. Recently proposed and tested by TRIUMF balloon-type spoke cavity showed an outstanding multipactor (MP) suppression property but unfortunately serious Q degradation at high fields. A new fully developed design of a dressed balloon cavity which can be used for any proton linac SSR2 section is developed. The design incorporates additional EP ports for high Q-factor demonstration. Superior properties are demonstrated, such as effective multipactor suppression, 40% lower Lorentz force coefficient, zero sensitivity to external pressure. This paper presents the results of coupled structural Multiphysics analysis, and engineering design of the dressed balloon cavity with EP ports. |
||
![]() |
Poster TUPAB166 [1.394 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB166 | |
About • | paper received ※ 15 May 2021 paper accepted ※ 21 June 2021 issue date ※ 01 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB167 | Status of Conduction Cooled SRF Photogun for UEM/UED | 1773 |
|
||
Funding: DOE #DE-SC0018621 Benefiting from the rapid progress on RF photogun technologies in the past two decades, the development of MeV range ultrafast electron diffraction/microscopy (UED and UEM) has been identified as an enabling instrumentation. UEM or UED use low power electron beams with modest energies of a few MeV to study ultrafast phenomena in a variety of novel and exotic materials. SRF photoguns become a promising candidate to produce highly stable electrons for UEM/UED applications because of the ultrahigh shot-to-shot stability compared to room temperature RF photoguns. SRF technology was prohibitively expensive for industrial use until two recent advancements: Nb3Sn and conduction cooling. The use of Nb3Sn allows to operate SRF cavities at higher temperatures (4K) with low power dissipation which is within the reach of commercially available closed-cycle cryocoolers. Euclid is developing a continuous wave (CW), 1.5-cell, MeV-scale SRF conduction cooled photogun operating at 1.3 GHz. In this paper, the technical details of the design and first experimental data are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB167 | |
About • | paper received ※ 29 May 2021 paper accepted ※ 21 June 2021 issue date ※ 01 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |